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5535, 1919 Route de Mende, Cedex 5, 34293 Montpellier, France
6Lead Contact

*Correspondence: richard.treisman@crick.ac.uk

http://dx.doi.org/10.1016/j.molcel.2016.10.016
SUMMARY

The ERK-regulated ternary complex factors (TCFs)
act with the transcription factor serum response
factor (SRF) to activate mitogen-induced transcrip-
tion. However, the extent of their involvement in the
immediate-early transcriptional response, and their
wider functional significance, has remained unclear.
We show that, in MEFs, TCF inactivation significantly
inhibits over 60% of TPA-inducible gene transcrip-
tion and impairs cell proliferation. Using integrated
SRF ChIP-seq and Hi-C data, we identified over 700
TCF-dependent SRF direct target genes involved in
signaling, transcription, and proliferation. These
also include a significant number of cytoskeletal
gene targets for the Rho-regulated myocardin-
related transcription factor (MRTF) SRF cofactor
family. The TCFs act as general antagonists of
MRTF-dependent SRF target gene expression,
competing directly with the MRTFs for access to
SRF. As a result, TCF-deficient MEFs exhibit hy-
percontractile and pro-invasive behavior. Thus,
competition between TCFs and MRTFs for SRF
determines the balance between antagonistic prolif-
erative and contractile programs of gene expression.

INTRODUCTION

Ras-ERK signaling is critical for control of proliferation, invasion,

and metastasis. Ras activation stimulates cell-cycle re-entry

from quiescence, and Ras genes are mutated in around 20%

of human cancers (Chambard et al., 2007; Pylayeva-Gupta

et al., 2011). Ras-ERK signaling plays an important role in this im-

mediate-early (IE) transcriptional response to mitogen stimula-

tion, which activates many genes encoding transcription factors,

including Myc and members of the AP1 and Egr families (Co-

chran et al., 1984; Greenberg and Ziff, 1984; Kelly et al., 1983).
1048 Molecular Cell 64, 1048–1061, December 15, 2016 ª 2016 The
This is an open access article under the CC BY license (http://creative
Many IE genes are controlled by the transcription factor serum

response factor (SRF, Srf), which is required for Ras-induced

cell-cycle re-entry but not for proliferation per se (Gauthier-Rou-

vière et al., 1990; Schratt et al., 2001).

SRF acts in partnership with two families of signal-regulated

cofactors. The three ternary complex factors (TCFs) Elk-1, Net,

and SAP-1 (Elk1, Elk3, and Elk4) are Ets domain proteins, regu-

lated by Ras-ERK signaling (Buchwalter et al., 2004; Shaw

et al., 1989), whereas themyocardin-related transcription factors

(MRTFs) Mkl1 and Mkl2 respond to the Rho-actin pathway

(Miralles et al., 2003; Olson and Nordheim, 2010). The TCFs

and MRTFs interact competitively with the SRF DNA-binding

domain (Miralles et al., 2003; Zaromytidou et al., 2006). Whether

cofactor competition is a general feature of SRF regulation in vivo

has been unclear. In fibroblasts, some IE genes appear to be

specifically coupled to one pathway or the other, but in smooth

muscle cells, platelet-derived growth factor (PDGF) can induce

cofactor exchange (Wang et al., 2004).

Genetically, the TCFs are at least partly functionally redundant

(Costello et al., 2010; Weinl et al., 2014) and may also function

independently of SRF (Boros et al., 2009a, 2009b; Buchwalter

et al., 2005). Although they have been implicated in proliferation

and cancer (Vickers et al., 2004;Wozniak et al., 2012; Yang et al.,

2012), the extent to which the immediate-early transcriptional

response is TCF-dependent, and the target genes involved,

has not been systematically investigated. In contrast, theMRTFs

mediate morphogenetic, adhesive, and motile processes (Mir-

alles et al., 2003; Olson and Nordheim, 2010; Schratt et al.,

2002).

We showed previously that much of the serum-induced imme-

diate transcriptional response is MRTF/SRF-dependent (Esnault

et al., 2014); however, the lack of specific TCF inhibitors and the

relatively poor quality of TCF chromatin immunoprecipitation

(ChIP) data precluded rigorous analysis of the role of TCF-SRF

signaling. Here we used wild-type and triply TCF-deficient

mouse embryonic fibroblasts (MEFs) to directly address the

role of the TCFs in the transcriptional response to 12-O-tetrade-

canoyl phorbol-13-acetate (TPA)-induced ERK activation. We

show that the majority of the immediate transcriptional response

is TCF-dependent, either directly or indirectly. TCF-deficient
Author(s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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MEFs proliferate slowly, and TCF-dependent SRF target genes,

which include Myc, are predominantly associated with cell

signaling, metabolism, and proliferation. Strikingly, the TCFs

also act as general negative regulators of cell adhesion, contrac-

tility, and motility by inhibiting access of MRTFs to SRF at its

target genes.

RESULTS

TPA Treatment Both Activates andDownregulates Gene
Transcription
To activate TCF-SRF signaling in MEFs, we used the phorbol

ester TPA, which activates ERK via protein kinase C (PKC) and

RasGRP1 (Griner and Kazanietz, 2007). TPA also downregulates

Rho-actin signaling (Panayiotou et al., 2016) and thus allows the

identification of genes that are particularly sensitive to TCF acti-

vation. In immortalized MEFs, TPA activated classical TCF-SRF

targets such as Egr1 but not MRTF-SRF target genes such as

Vcl, although all were activated by serum stimulation (Fig-

ure S1A). We used RNA sequencing (RNA-seq) to analyze the

global response to TPA stimulation, analyzing both total and in-

tronic RNA-seq reads to maximize sensitivity (Figure 1A; Table

S1). The TPA-induced gene set is enriched in gene hallmarks

(i.e., gene cohorts that change similarly in different contexts;

Subramanian et al., 2005) associated with the cell cycle,

signaling networks, and particular transcription factors (Fig-

ure 1B; Table S2A) and gene ontology (GO) terms for genes

involved in signaling, metabolism, the cell cycle, and the cyto-

skeleton (Table S2B). It was also significantly enriched for genes

from both the TCF- and MRTF-SRF gene signatures (Esnault

et al., 2014; Figure 1B), suggesting that many MRTF-SRF target

genes are also directly or indirectly controlled by the TCFs (see

below). In contrast, TPA-downregulated genes were associated

with hallmarks involving specific cellular functions, particularly

metabolism; MRTF-SRF target genes were also enriched in

this group, consistent with TPA downregulating Rho (Figure 1B;

Tables S2A and S2B; see below).

TCFs Promote Cell Proliferation and Control Most
TPA-Induced Transcription
To investigate the role of TCFs in gene expression and cell

behavior, we studied MEFs from embryos lacking all three TCFs
Figure 1. Much of the TPA-Induced Transcriptional Response Is TCF-D

(A) Scatterplot displaying total and intronic RNA-seq read counts before and afte

regulated genes in green (FDR = 0.01, fold change R 10%).

(B) The relation between TPA-induced and -downregulated genes and MsigDB

Bonferroni-adjusted p value.

(C) Heatmap representation of the relative expression of TPA-induced genes in w

TPA in wild-type MEFs.

(D) Identification of TCF-dependent genes by comparison with the TPA induction

TCF-dependent genes (orange) exhibit a systematic relationship between their d

Spearman r are indicated. Right: data summary.

(E) Changes to basal gene expression in TKO MEFs. The relation between genes

and MsigDB hallmark gene set signatures was assessed as in (B).

(F) TPA-downregulated SRF targets are TCF-independent but exhibit increased

of total and intronic RNA. Center line, median; top and bottom edges, 75th

signed-rank test).

See also Figure S1 and Tables S1 and S2.
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(triple knockout [TKO] MEFs; Costello et al., 2010). Strikingly,

TKO MEFs were significantly less proliferative than wild-type

MEFs (Figure S1B), with increased numbers of cells in G2/M

compared with wild-type cells (Figure S1C). They also exhibited

somewhat enhanced ERK activation in response to TPA (Fig-

ure S1D), probably reflecting aberrant expression of ERK phos-

phatases (Buffet et al., 2015). Nevertheless, TPA induction of

classical TCF-linked immediate-early genes was effectively abol-

ished in TKOMEFs (Figure S1E), although serum induction of SRF

target genes was less impaired (Figures S1A, S1E, and S1F).

RNA-seq analysis revealed that the global transcriptional

response to TPA was substantially altered in TKO MEFs (Fig-

ure 1C). Using an iterative pipeline to compare gene inducibility

in the two different backgrounds, we partitioned the genes

induced by TPA in wild-type MEFs into TCF-dependent and -in-

dependent groups (Supplemental Experimental Procedures).

Over 60%of TPA-induced gene expression was TCF-dependent

(estimated at 2,142 of 3,470), whereas TPA-downregulated gene

expression showed no obvious TCF-dependence (Figure 1D).

Thus, consistent with their known biochemical role in gene acti-

vation, the TCFs act positively in the transcriptional response to

TPA stimulation.

TCF inactivation also changed the basal expression of approx-

imately 60% of genes detectably transcribed in wild-type MEFs,

regardless of their acute response to TPA stimulation (Figure 1E).

Consistent with the proliferative defect observed in TKO cells,

genes with reduced basal expression were enriched in gene hall-

marks and GO terms associated with cell-cycle and proliferative

responses (Figure 1E; Tables S2A and S2B). In contrast, genes

exhibiting increased basal transcription in TKO cells included a

substantial number of genes previously identified as MRTF-

SRF targets (383 of 683; Esnault et al., 2014) predominantly

associated with cytoskeletal hallmarks and GO terms (Figure 1E;

Tables S2A and S2B). Many of these genes were downregulated

in response to TPA in wild-typeMEFs (Figure 1F). Thus, the TCFs

not only mediate the acute response to ERK activation but also

negatively regulate MRTF-SRF signaling (see below).

Integration of SRF ChIP-Seq and Hi-C Datasets
Identifies Candidate SRF Target Genes
To identify TCF-dependent SRF target genes, we set out

to correlate the RNA-seq data with SRF ChIP sequencing
ependent

r 30 min of TPA stimulation. Induced genes are highlighted in red and down-

hallmark gene set signatures was assessed by hypergeometrical test. p-val,

ild-type and TKO MEFs ranked by absolute change in transcription induced by

ratio in wild-type and TKO MEFs using both total and intronic RNA-seq reads.

egree of induction in the two contexts whereas others (gray) do not; slope and

whose basal expression is increased (top) or decreased (bottom) in TKO MEFs

baseline expression in TKO MEFs. Boxplots present the average fold change

and 25th percentiles. ****p < 0.0001, **p < 0.01 (Wilcoxon matched pair
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Figure 2. Integration of SRF ChIP-Seq in MEFs with Hi-C Interaction Data

(A) The TCFs enhance SRF binding at many sites. Metaprofiles of the SRF ChIP-seq signal at sites where SRF binding is unaffected by TCFs (constitutive) or

where they enhance it (TCF-enhanced).

(B) Comparison of the frequency of SRF sites at increasing distances from active and inactive gene TSSs (10-kb bins). *, significant at p < 0.05 (multiple t test with

Holmes-Sidak correction).

(C) Most TSS Hi-C interactions in MEFs coincide with DNase I HS at 10-kb resolution. Left: TSS interactions with non-TSS regions. Right: TSS-TSS interactions.

Blue, interactions involving regions containing at least one DNase I HS.

(D) Hi-C analysis. Chromosome 7 is shown with tracks as follows: significant Hi-C interactions displayed using the WashU EpiGenome browser; active (red) and

inactive (blue) RefSeq-annotated genes identified by RNA-seq; PCA analysis of Hi-C data with A regions (positive PCA score) shown in red and B regions

(negative PCA score) in blue; comparison of individual PCA regions (black) with the TADs (gray) previously annotated in MEFs (Battulin et al., 2015); SRF binding

sites; and DNase I HS frequency per base.

(E) The relation between TSS-SRF interaction distance in Hi-C and gene activity defined by RNA-seq. Top: interactions involving active (red) or inactive (gray)

TSSs. Bottom: interactions with TPA-induced TSSs; those whose induction is TCF-dependent are highlighted in orange.

See also Figure S2.
(ChIP-seq). We first identified 2,577 high-confidence SRF

binding sites (Figure 2A; Figure S2A; Table S3). In TKO

MEFs, �40% of these showed reduced SRF binding and

increased H3 occupancy, suggesting that cooperative TCF-

SRF binding facilitates nucleosome exclusion (Esnault et al.,

2014; Figure S2B). SRF sites were statistically overrepresented

within 100 kb of active genes in MEFs (Figure 2B), coinciding

with DNase I-hypersensitive sites (DNase I HS) (Figures S2C–

S2E; see GEO: GSM1003831 and GSM1014199). They were

associated with the same transcription factor (TF) binding

motifs as in NIH 3T3 fibroblasts (Esnault et al., 2014), although,

at TCF-enhanced sites, Ets motifs were more prevalent, sug-

gesting that TCF-SRF interaction facilitates SRF binding

(Figure S2F).
Integration of Hi-C chromosome interaction maps with

ChIP-seq data can reliably identify signal-induced genes

controlled by remote regulatory sites (Jin et al., 2013). We there-

fore integrated the SRF ChIP-seq data with recently determined

Hi-C maps of intrachromosomal interactions in MEFs (Battulin

et al., 2015; Minajigi et al., 2015). We combined the MEF Hi-C

datasets using iterative mapping (Imakaev et al., 2012; Experi-

mental Procedures), identifying 1.3 million Hi-C interactions at

10-kb resolution, of which around 100,000 linked RefSeq-anno-

tated transcription start sites (TSSs) to remote, mostly non-TSS,

regions containing DNase I HS (Figure 2C).

Using principal component analysis (PCA) (Lieberman-Aiden

et al., 2009; Experimental Procedures), we partitioned the

genome into regions of preferential Hi-C interaction (Figure 2D;
Molecular Cell 64, 1048–1061, December 15, 2016 1051
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Figure 3. Genome-wide Identification of Direct SRF/TCF Target Genes

(A) Definition of the TCF-dependent TPA-inducible gene set. The integrated SRF ChIP-seq Hi-C data are summarized according to the distance between

inducible TSSs to the closest SRF site, with those TSSs and SRF sites displaying Hi-C interaction shaded in red (not all interactions within 10 kb of TSSs were

detectable byHi-C analysis). The 763 Direct TCF-SRF target genes are defined as thosewhose TSSs arewithin 10 kb of an SRF site or that interact with one at any

distance, as judged by Hi-C. 1,062 Indirect TCF-dependent target genes are defined as those whose TSSs are >100 kb from an SRF site and exhibit no Hi-C

interaction with one.

(B) Remote-controlled SRF targets. TheMyc and Kbtbd2 loci are shownwith Hi-C paired-end reads (10 kb bins) with endsmapping to SRF binding sites shown in

red. SRF ChIP-seq binding sites and RefSeq-annotated genes are shown below, with TPA-induced genes shown in green. Significant Hi-C interactions by the

Myc and Kbtbd2 TSS are shown in blue, with those involving SRF sites shown in red. The effect of TCF inactivation on RNA-seq reads is shown at the right.

(C) Interactions between the TCF-SRF direct target gene Egr1 and remote SRF sites identified by Hi-C, displayed as in (B).

(legend continued on next page)
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Figures S2G and S2H). These regions, denoted A and B accord-

ing to PCA score, encompass the topologically associating do-

mains (TADs) defined previously in MEFs (Battulin et al., 2015)

and are analogous to the ‘‘A and B compartments’’ defined

previously at 1-Mb resolution (Lieberman-Aiden et al., 2009).

The A regions correlated strongly with the presence of genes

and with overall gene expression (Figure S2I). They also showed

significant correlation with DNase I HS frequency, an indepen-

dent indicator of gene activity (Figure S2J). Most importantly,

the A regions contained over 80% of the SRF binding sites

(2,137 of 2,577; Figure 2E; Figure S2K). Most TSSs linked to

remote SRF binding sites by Hi-C were transcriptionally active,

and most TPA-inducible TSSs linked to remote sites were

also TCF-dependent (Figure 2E; Table S1), suggesting that the

integrated SRF ChIP-seq/Hi-C method identifies functionally

relevant TSS-SRF interactions.

Definition of TCF-Dependent TPA-Induced SRF Target
Genes
Of the 3,470 TPA-inducible genes, 1,231 had TSSs within 10 kb

of an SRF site and/or interacted with a remote SRF site in Hi-C

(Figure S3A). Activation of 763 was TCF-dependent, so we

defined them as high-confidence Direct TCF-SRF targets (Fig-

ure 3A; Table S1). The majority of these (472 of 763) had closest

interacting SRF sites >10 kb distant, in many cases >100 kb

away, and many exhibited multiple long-distance interactions

with SRF, including Kbtb2 and Myc, which interacts with five

remote SRF sites, the closest at �200 kb (Figures 3B and 3C;

Table S1; Discussion). TPA-induced chromatin modification at

the Myc TSS region is also TCF-dependent (data not shown;

C.E., F.G., S.H., A.S., N.M., R.T., G. Kelly, and P. East, unpub-

lished data). The Egr1 TSS region, which contains multiple SRF

sites, also interacted with a putative remote SRF-linked

enhancer, the TPA-inducible TCF-dependent Etf1 gene �70 kb

downstream, and other more distant genes (Figure 3C). In all,

174 ‘‘remote-controlled’’ TSSs were linked to SRF sites that

were themselves close to TSSs, blurring the distinction

between ‘‘enhancer’’ and ‘‘promoter’’ elements (Figures 3B

and 3C; Table S1).

The integrated Hi-C/ChIP-seq data allowed definition of a

high-confidence set of 1,062 indirectly TCF-dependent TPA-

inducible genes that have TSSs that are neither near SRF sites

nor physically interact with them in Hi-C (Figure 3D; see below).

Gene set enrichment analysis using the MsigDB database

showed that the TCF-dependent Direct and Indirect gene sets

were related but distinct (Figure 3E; Tables S4A andS4B). Similar

to the TPA-induced population as a whole, Direct genes were

enriched in gene hallmarks involved in the cell cycle, signaling

networks, and particular transcription factors (Table S4A) and

GO categories related to signaling, metabolism, the cell cycle,

and the cytoskeleton (Table S4B).

Interestingly, the TCF-dependent Direct gene set contained

100 genes shown previously to be MRTF-SRF targets in
(D) TPA induction is similar at both Direct and Indirect TCF target genes, as asse

(E) The relation between Direct and Indirect TCF target genes and MsigDB hallma

genes and the Bonferroni-adjusted p value are shown).

See also Figure S3 and Tables S3 and S4.
serum-stimulated NIH 3T3 fibroblasts (Esnault et al., 2014;

Figure S3A; Table S1). This ‘‘shared MRTF-TCF’’ gene set was

enriched in gene hallmarks and GO terms involving the cytoskel-

eton, whereas the remaining ‘‘TCF-only’’ gene set was enriched

in proliferative and signaling gene hallmarks and GO terms

(Tables S4A and S4B). Finally, approximately 30% of genes

whose basal expression was decreased upon TCF inactivation

were also physically linked or close to SRF binding sites

(1,501 of 5,113; Figure S3B), suggesting that they respond

directly to basal levels of TCF activity. The role of the TCFs in

the regulation of genes exhibiting enhanced basal activity in

TKO MEFs will be considered below.

Elk-1 Re-expression Partially Restores Regulation to
TCF-Dependent Target Genes
To assess to what extent TPA-induced gene expression reflects

the action of the ERK-regulated TCF activation domain, we re-

constituted TKO MEFs with derivatives of the human Elk-1 TCF

(Figure S4A). Re-expression of wild-type Elk-1 but not the tran-

scriptionally inactive mutants Elk-1nonA and Elk-1DFW (Balamotis

et al., 2009; Buchwalter et al., 2004, 2005) restored significant

TPA-inducibility to many Direct and Indirect TCF target genes

(Figures 4A and 4B; Table S5). Approximately half of the TPA-in-

ducible TCF-dependent genes (1,016 of 2,142) appeared to be

Elk-1 responsive (Figure 4B; Figure S4B). Elk-1 expression

preferentially restored the activity of Direct TCF targets, and

left TCF-independent genes unaffected (Figure 4C; Figure S4B).

Elk-1-responsive genes were enriched for gene hallmarks and

GO terms associated with proliferation, cell-cycle control, chro-

mosomal replication, and segregation (Tables S4A and S4B),

although Elk-1 expression failed to restore normal proliferation

to reconstituted TKOMEFs (Figure 4D). Thus Elk-1, and presum-

ably the other TCFs, is directly involved in control of proliferative

gene expression.

The Elk-1 TCF Functions with SRF in the TPA Response
To gain insight into the extent to which Elk-1’s activity is SRF-de-

pendent as opposed to autonomous (Boros et al., 2009a,

2009b), we carried out ChIP-seq in reconstituted TKO MEFs

(Experimental Procedures). We identified 336 high-confidence

Elk-1 binding sites associated with CArG and ETS motifs, bound

equally well by the Elk-1nonA and Elk-1DFW mutants, and unaf-

fected by TPA stimulation (Figure 4E; Figure S4D, Table S3). Of

these Elk-1 sites, 251 coincided with SRF peaks, whereas 85

were apparently SRF-independent ‘‘solo’’ sites (Figure 4F). In

general, the SRF-associated Elk-1 peaks coincided with DNase

I HS and were located proximal to TSSs, whereas the solo Elk-1

sites were not (Figures S4F and S4G; Table S3).

Approximately 25% of the detectable SRF/Elk-1 binding sites

(89 of 356) were associated with the Direct TCF-SRF target

genes, and a further 30 were associated with TPA-inducible

SRF target genes that were not scored as TCF-dependent (Fig-

ure S3B; Table S3). In contrast, only 2.5% of Elk-1 solo binding
ssed by the fold change in intronic RNA-seq reads.

rk gene set signatures was assessed by hypergeometrical test (the number of
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Figure 4. Elk-1 Acts with SRF to Restore TCF-Dependent Gene Expression in TKO MEFs

(A) Identification of genes whose induction in TKO MEFs is restored by expression of wild-type human Elk-1. The plots compare the TPA induction ratio in TKO

MEFs with and without Elk-1 expression for both total and intronic RNA-seq reads. Genes whose induction is restored by Elk-1 (red) exhibit a systematic

relationship between their inducibility in the two contexts whereas others (gray) do not; slope and Spearman r are indicated. Right: summary.

(B) Heatmap representation of TPA-induced gene expression (fold change over baseline) in wild-type and TKO MEFs and TKO MEFs expressing the indicated

Elk-1 derivatives. Genes whose regulation is restored by wild-type Elk-1 are shown, divided into Direct and Indirect categories. The plot is ranked by the

magnitude of the TPA-induced changes in wild-type MEFs.

(C) Proportions of Direct and Indirect TCF target genes whose regulation by TPA is restored by Elk-1 expression. Restoration of Direct, but not Indirect, targets is

significantly above the 47% expected from the overall restoration of TCF targets (two-tailed binomial test, *p < 0.05).

(D) Expression of human does not restore the proliferation defect observed in TKO MEFs. Cell counts for TKO MEFs expressing the indicated proteins were

recorded over 4 days.

(E) Metaprofiles showing the average normalized count per base across the 336 Elk-1 binding sites identified by ChIP-seq in TKO MEFs reconstituted with Elk-1

derivatives as indicated.

(F) Coincidence between SRF and Elk-1 ChIP-seq peaks.

(G) Direct TCF-SRF targets whose regulation is restored by Elk-1 expression are closer to SRF sites than those whose regulation is not. Mann-Whitney test,

*p < 0.05.

(H) Elk-1 transactivation is weaker than that of SAP-1. TPA induction of 16 direct TCF targets (Egr1, Egr2, Egr3, Ier2, Per1, Junb, Fos, Zfp36,Dnajb1, Arl5, Pitpna,

Mob3a, Pramef8, Tada3, Argap1, and Arpc4) and three indirect targets (Ier3, Klf10, and Cxcl1) was analyzed by qRT-PCR.

(I) SAP-1 expression restores proliferation in TKO MEFs. Cells were counted over 4 days. Two-way ANOVA, **p < 0.01.

See also Figure S4 and Tables S5 and S6.
sites (9 of 356) were associated with TPA-inducible genes (Table

S4A). Elk-1 re-expression in TKOMEFs restored TPA inducibility

to genes associated with SRF/Elk-1 sites (94 of 151) or solo Elk-1

sites (3 of 9; Abce1, Trpc7, andHat1) (Table S5). Thus, Elk-1 acts

predominantly in partnership with SRF to control TPA-inducible

gene expression.

Next we sought to understand why Elk-1 expression only

partially restored TCF-dependent TPA induction. Although it

cannot be ruled out that this reflects gene-specific targeting of

Elk-1, we found that the ‘‘rescued’’ genes had TSSs that were

in general significantly closer to SRF sites than genes that
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were refractory to Elk-1 expression (Figure 4G). Previous studies

have suggested that strong transcriptional activators work more

effectively over distance than weak ones (Carey et al., 1990). We

therefore compared the strength of transcription activation by

Elk-1 with that of its relative SAP-1, with which it is functionally

redundant (Costello et al., 2010). SAP-1 was significantly more

effective than Elk-1 in restoring TPA-inducibility to 19 selected

TCF-SRF target genes in TKO MEFs (Figure 4H; Figure S4A)

and also substantially enhanced TKO MEF proliferation (Fig-

ure 4I). Taken together, these results suggest that the partial

rescue of TCF-SRF target genes by Elk-1 expression in TKO
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Figure 5. Indirect and Direct TCF-Dependent Target Genes Are Linked by Transcriptional Regulation
(A) Heatmap representation of TPA-induced transcription of 54 transcription factor genes from the Direct TCF target gene set, ranked by magnitude of the

TPA-induced changes in wild-type MEFs.

(B) Potential relationships between DNase I HS (gray) and SRF binding sites (red) at TSS-proximal or remote regulatory sites of Direct and Indirect TCF target

genes, with Hi-C linkages indicated by the crescent.

(C) TF motifs occurring in putative regulatory regions (DNase I HS summit ± 100 bp) of Direct and Indirect TCF target genes. Motifs scoring as significantly

enriched relative to their representation across all DNase I HS-associated sequences are shown together with their frequency. CTCF was recovered at all distal

motifs, presumably reflecting its association with the insulator elements that define compartment boundaries.

See also Table S6.
MEFs at least partly reflects its relatively weak transcriptional

activation capacity.

Indirect and Direct TCF-Dependent Target Genes Are
Linked through Transcriptional Regulation
The expression of Indirect TCF-dependent target genes must

either rely on basal levels of proteins encoded by direct TCF-SRF

target genes, or reflect a secondary response to transcriptional
regulators produced by immediate-early genes. The Direct

TCF-SRF target gene set includes 54 different transcription

factors, many of which are themselves sensitive to ERK activa-

tion (for references, see Table S6). These include members of

the Egr, AP-1, Ets, NF-kB, and STAT families in addition to

Myc, p53, and others (Figure 5A), and the Direct gene set is

indeed enriched in gene hallmarks associated with these tran-

scription factors (Tables S4A and S4B).
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Figure 6. TCF Binding Directly Antagonizes MRTF-Dependent Gene Expression

(A) Quantitative ChIP analysis of MRTF-A and SRF binding at regulatory elements of Acta2, Ankrd1, Slc2a1, and Zfp37 negative control in wild-type and TKO

MEFs either resting (0.3% FCS, black) or treated with serum (30 min, blue), TPA (30 min, black), or Latrunculin-B (5 min, gray). Error bars show SEM (n = 4).

(B) TKOMEFs are large and contain more aligned actin fibers. Cells were stained for F-actin (Phalloidin, magenta) and DNA (DAPI, blue), and the cellular area and

aligned actin fibers were quantified (n = 16, >3,000 cells/condition). Read line, mean per set of replicates. (****p < 0.0001, ***p < 0.001, Mann-Whitney test).

(C) TKOMEFs are highly contractile. Left: representative replicate gel contraction wells containing wild-type (red) or TKO (black) MEFs. Right: quantitation (n = 12;

red bar, mean; ****p < 0.0001; Mann-Whitney test).

(legend continued on next page)

1056 Molecular Cell 64, 1048–1061, December 15, 2016



To investigate the relation between Indirect and Direct TCF

target gene regulation, we examined their potential regulatory

sequences. Many of these are likely to coincide with DNase I

HS, so we performed HOMER motif analysis on all DNase I

HS sequences located within 10 kb of or linked to Indirect

TSSs by Hi-C, scoring only motifs over-represented with respect

to the entire DNase I HS sequence population (Figures 5B and

5C). At TCF targets, TSS-proximal sites were enriched in SRF,

Ets, AP-1, NF-kB, Kruppel-related (i.e., Egr-like), and E2Fmotifs,

whereas distal sites were associatedwith Ets, Homeobox, STAT,

p53, and E-BOX motifs; as expected, the SRF consensus was

not enriched at Indirect targets (Figure 5C). These data support

the view that products of Direct TCF-SRF target genes are

required for the response of Indirect TCF targets to TPA

stimulation.

TCF Binding Antagonizes MRTF-SRF Signaling
We saw above that many genes exhibit increased basal tran-

scription in TKOMEFs (Figure 1D; Table S1), including hundreds

previously identified as MRTF-SRF target genes in NIH 3T3

cells (Esnault et al., 2014). Indeed, in TKO MEFs, the enhanced

transcription of MRTF-SRF targets such as Acta2, Ctgf, and

Dstn was inhibited by Latrunculin B (LatB), which inhibits

MRTF (Miralles et al., 2003; Figure S5A). Moreover, quantitative

ChIP showed substantially increased basal levels of MRTF

recruitment to SRF targets such as Acta2, Ankrd1, and Slc2a1,

which was inhibited by LatB or TPA, which inhibit Rho-actin

signaling (Miralles et al., 2003), but further increased by serum

stimulation (Figure 6A; Figure S5A). TKO MEFs also exhibited

increased MRTF access to TCF-SRF direct target IE promoters

in wild-type cells (Figure S5B). Thus, TCF inactivation potenti-

ates MRTF-SRF signaling.

Finally we investigated the functional consequences of the

increased MRTF-SRF signaling in TKO MEFs. TKO MEFs were

larger than wild-type cells, contained increased numbers of

parallel F-actin fibers (Figure 6B), and were significantly more

contractile than wild-type MEFs, as assessed by the ability to

contract collagen gel (Figure 6C). Re-expression of wild-type

or transcriptionally inactive Elk-1 derivatives, or wild-type

SAP-1 effectively suppressed the hypercontractile phenotype

(Figure 6D). Pro-invasive behavior is associated with hypercon-

tractility in cancer-associated fibroblasts (Calvo et al., 2013;

Gaggioli et al., 2007). Accordingly, TKO MEFs, but not wild-

type MEFs, strongly promoted invasion of 4T1 breast carcinoma

cells in organotypic culture, and this was inhibited by small

interfering RNA (siRNA)-mediated MRTF depletion (Figure 6E;

Figure S5C). In sum, these data show that the TCFs generally

inhibit MRTF-SRF signaling and that this reflects direct competi-

tion with the MRTFs for access to SRF, rather than the TCFs’

ability to induce gene expression (Discussion). As a result,
(D) TKO MEF hypercontractility is suppressed by expression of either wild-type

SAP-1. Quantitation is as in (C).

(E) Representative images showing the invasion of 4T1 breast carcinoma cells into

without MRTF-A/B or control siRNAs.

(F) Direct competition model for antagonism between MRTF-SRF- and TCF-SRF-

shared targets is indicated by diagonal shading.

See also Figure S5.
TCF-MRTF antagonism can contribute to control of ‘‘activated’’

fibroblast phenotypes, as seen in carcinoma-associated fibro-

blasts (Figure 6F; Discussion).

DISCUSSION

Most TPA-Induced Gene Activation Is TCF-Dependent
The ERK-regulated TCF family of SRF partner proteins were first

identified as regulators of the Fos gene (Buchwalter et al., 2004;

Shaw et al., 1989), but the extent of their role in immediate-early

gene expression and its significance for cell proliferation have

been unclear.We found that TPA-induced genes inMEFs are en-

riched for gene hallmarks and GO terms associated with signal

transduction, metabolism, transcription, and proliferation. Over

60% of TPA-induced gene expression in MEFs was TCF-depen-

dent, and the proliferation of TCF-deficient MEFs was impaired.

Previous studies have implicated the TCFs in control prolifera-

tion in response to adhesive and oncogenic stimuli (Vickers

et al., 2004; Wozniak et al., 2012; Yang et al., 2012), and our

results show that TCF-SRF signaling controls a gene expression

program governing proliferation. We also found that TPA signif-

icantly downregulated many MRTF-SRF-controlled genes,

consistent with the finding that TPA also downregulates Rho

(Panayiotou et al., 2016).

The Role of the TCFs in TPA-Induced Transcriptional
Activation
We used an integrated SRF ChIP-seq/Hi-C approach to define a

set of 763 TPA-induced TCF-SRF Direct target genes, whose

TSSs are in close proximity to and/or physically linked to SRF

binding sites. The Direct TCF-dependent gene signature pro-

vides a picture of the acute transcriptional response to ERK

activation and, like the TPA-induced signature as a whole, it is

significantly enriched in genes involved in signaling, transcrip-

tion, and proliferation. Regulated expression of many Direct

TCF-SRF target genes in TCF-deficient MEFs in TKO cells could

be restored by re-expression of human Elk-1. TCF activity also

promoted basal transcription of many genes in MEFs, whether

TPA-inducible or not. This might reflect stochastic pulses of

ERK activation that occur in many cell types (Aoki et al., 2013).

MRTF-SRF signaling regulates target genes involved in cyto-

skeletal dynamics (Esnault et al., 2014; Medjkane et al., 2009;

Olson and Nordheim, 2010; Schratt et al., 2002), and, interest-

ingly, numerous members of the Direct TCF-SRF-dependent

gene set were defined previously as MRTF-SRF targets in

serum-stimulated NIH 3T3 cells (Esnault et al., 2014). Thus, at

a significant number of genes, both cofactor families can variably

access SRF according to cellular context (Figure 6F). Our results

imply that the relative levels of TCF and MRTF proteins in

different biological contexts can affect the balance between
Elk-1, its two transcriptionally inactive derivatives Elk-1FW and Elk-1nonA, or

Matrigel containing no added fibroblasts, wild-typeMEFs, or TKOMEFswith or

dependent gene expression programs. Competition between the pathways for

Molecular Cell 64, 1048–1061, December 15, 2016 1057



proliferative and cytoskeletal gene expression programs (Fig-

ure 6F); this is discussed further below. The Yap-Taz proteins

are also implicated in the control of both proliferative and cyto-

skeletal gene expression, acting at least in part through long-

range TEAD/AP-1 elements (Dupont et al., 2011; Zanconato

et al., 2015). Several AP-1 components are encoded by SRF

target genes, providing a potential mechanism by which the

two pathways might converge.

We found that TCF-SRF signaling contributes to TPA-induced

Myc transcription and identified five distant potential regulatory

SRF sites. Myc was first identified as a mitogen-inducible gene

over 30 years ago (Greenberg and Ziff, 1984; Kelly et al., 1983),

and its regulation remains poorly understood, but our findings

identify a regulatory input for ERK signaling (Kerkhoff et al.,

1998). The E box Myc binding consensus is enriched at putative

regulatory sequences of genes that are indirectly TCF-respon-

sive, consistent with Myc playing a role in the secondary

response to growth factor stimulation. In spite of this, Myc

cooperates with Ras in transformation, perhaps reflecting

downregulation of ERK by chronic Ras activation.

Previous work has shown that the TCFs can regulate tran-

scription independently of SRF (Boros et al., 2009a, 2009b;

Buchwalter et al., 2005), but Elk-1 predominantly acted through

SRF in our system. The ability of Elk-1 to restore TPA-inducible

transcription in TKO MEFs required its transcriptional activation

domain, indicating that Elk-1 acts by providing a primary signal

input for activation. Nevertheless, Elk-1 failed to restore the

TPA-induced transcriptional response at all TCF-dependent

direct SRF targets; it also restored chromatin modifications at

only a subset of TCF-dependent SRF target TSSs (C.E., F.G.,

S.H., A.S., N.M., R.T., G. Kelly, and P. East, unpublished data).

Although it is likely that this reflects TCF-specific gene targeting,

our results suggest that the strength of transcription activation

by the different TCFs may also play a role. In a direct compari-

son, SAP-1 both activated transcription and restored prolifera-

tion more effectively than Elk-1, suggesting that it may restore

a greater fraction of TCF-dependent gene expression. However,

expression of mouse Elk-1 was also more effective than human

Elk-1 in restoring proliferation (Mylona et al., 2016). Resolution of

these issues will require direct comparative analysis of TCF

recruitment with genomic targets.

TCF Target Gene Identification by Integrated
ChIP-Seq/Hi-C
We identified over 700 TCF-dependent direct SRF target genes

by integrating ChIP-seq data from unstimulated MEFs with pub-

lished MEF Hi-C datasets (Battulin et al., 2015; Minajigi et al.,

2015), an approach used previously to identify NF-kB target

TSSs (Jin et al., 2013). Although this approach uses the stringent

criterion of direct TF-TSS physical interaction to identify candi-

date TF targets, because of limitations of the Hi-C data it is likely

to under- rather than over-estimate the number of true targets.

We note, however, that many SRF-interacting TSSs remained

unaffected by TPA stimulation and must be somehow refractory

to SRF-linked signals, as observed previously (Esnault et al.,

2014). Thus, even with an additional functional constraint, estab-

lishing SRF-TSS linkage by Hi-C is not sufficient to predict

whether a TSS is signal-regulated.
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The integrated SRF ChiP-Seq/Hi-C approach also allowed us

to define more than 1,000 TPA-inducible genes that, although

TCF-dependent, are not direct TCF-SRF targets. Induction of

these genes must either be dependent on the basal expression

of Direct TCF-SRF target genes or arise as a secondary

response to their acute activation. The putative regulatory se-

quences associated with Indirect TCF-SRF targets are

significantly enriched for the binding motifs of transcription

factors encoded by Direct TCF-SRF targets, supporting the

notion that the IE response is a transcription cascade.

The TCFs Antagonize MRTF-SRF Signaling
Our data show that TCF-MRTF antagonism is a general feature

of SRF regulation, reflecting their competition for binding to

SRF, to which their binding is mutually exclusive (Miralles

et al., 2003; Wang et al., 2004; Zaromytidou et al., 2006; Fig-

ure 6F). In fibroblasts, TCF-MRTF competition at many SRF sites

potentially influences the ‘‘activation’’ state by controlling

contractility and pro-invasive behavior. Nevertheless, many

SRF target genes appear to be coupled predominantly to one

pathway or the other (Gineitis and Treisman, 2001; Sotiropoulos

et al., 1999). This preference is likely determined by the quality of

the SRF binding site. TCF binds preferentially to sites with well-

defined Ets motifs (Treisman et al., 1992), whereas MRTF-SRF

interaction is favored at sites that can be easily bent (Zaromyti-

dou et al., 2006). Indirect MRTF-TCF antagonism can also occur,

however, as in the control of ERK signaling by the MRTF target

gene Mig6 (Descot et al., 2009).

Our data suggest a model in which the pro-proliferative effects

of TCF-SRF signaling and increased contractility brought about

by MRTF-SRF signaling are mutually antagonistic. In smooth

muscle cells, PDGF stimulation induces exchange of the Elk-1

TCF for myocardin (Wang et al., 2004), indicating that this antag-

onism may itself be influenced by signaling. Although TCF DNA

binding activity is not influenced by signal strength, nuclear

MRTF levels in resting cells are controlled by cellular G-actin

concentration (Miralles et al., 2003; Vartiainen et al., 2007).

Thus, TCF-MRTF competition will also be affected by the basal

level of Rho signaling, and factors affecting the degree to which

a particular stimulus activates Rho- and ERK-dependent path-

ways will therefore also influence SRF transcriptional outputs

(Figure 6F). It is tempting to speculate that it is TCF-MRTF

competition that has provided the selective pressure to maintain

the single SRF gene during metazoan evolution.

EXPERIMENTAL PROCEDURES

Cells

Wild-type or Elk1�/� Elk3d/d Elk4�/� mouse embryo fibroblasts (Costello et al.,

2010) were immortalized by expression of SV40 large T. For stimulation with

50 ng/ml TPA, MEFs were maintained in 0.3% FCS. MEFs were reconstituted

with wild-type human Elk-1 and SAP1 and Elk-1nonA and Elk-1DFW (Cruzalegui

et al., 1999; Marais et al., 1993; Price et al., 1995) by retroviral transduction

using standard procedures. Pools of MEFs expressing TCFs at similar levels

were derived by fluorescence-activated cell sorting (FACS) for GFP marker

expression. Fibroblast organotypic cultures and force-mediated matrix re-

modeling assays were as described previously (Calvo et al., 2013). High-

throughput imaging was used to quantify actin stress fiber length using the

Cellomics ArrayScan VTI and compartmental analysis (BioApplications;

3,000 cells/point).



ChIP and RNA Analysis

ChIP and ChIP-seq have been described previously (Esnault et al., 2014;

Miralles et al., 2003) with sequencing on the Hi-seq2500 (150-base read

lengths). Antibodies used were as follows: SRF (sc-335, lot no. D3013, Santa

Cruz Biotechnology) and MRTF-A (sc-21558, lot no. I1412, Santa Cruz);

anti-mouse Elk-1, amino acids (aa) 309–429, was made in-house (Costello

et al., 2010) and affinity-purified against recombinant human Elk-1nonA (aa

309–429). qPCR gene expression analysis was by standard methods. For

primers, see Supplemental Information.

RNA-Seq

Samples were prepared using the GenElute mammalian total RNA miniprep kit

(RTN350-1KT). DNA was removed by DNAase I and rRNA by the Ribo-zero

rRNA removal kit (Epicenter). RNA-seq libraries were prepared from 1 mg RNA

using the directional mRNA-seq Library Prep v1.0 protocol (Illumina). Libraries

were subjected to 72-base single-end sequencing on the Hiseq analyzer, and

trimmed to 50 bp. Raw and processed data are in the GEO: GSE75667.

RNA-seq data were aligned to the mm9 mouse genome using Burrows-

Wheeler Aligner (BWA) (default settings). Reads within annotated RefSeq

genes (‘‘all reads’’) and reads containing intronic sequences (‘‘intronic reads’’)

were annotated using the bam file obtained by BWA as input. Normalization

was against a set of invariant genes across samples, defined as those with

differences in read counts within 1s from the mean difference (mdiff), assuming

a quasi-normal distribution of gene read counts. Differential gene expression

analysis was performed with Deseq (comparing resting and TPA-induced,

wild-type, and TKO MEF samples; adjusted p value (adj-p) % 0.01; minimum

change of 10%). The effects of knockout and reconstituted background were

estimated by comparing the degree of gene induction under the different

conditions and identifying genes that are similarly affected (Supplemental

Information).

ChIP-Seq Analysis

ChIP-seq reads were trimmed to 50 bp and aligned using BWA to the mm9

mouse genome (default settings). Raw and processed data are online in the

GEO: GSE75667. Candidate SRF and Elk-1 peaks were identified by Model-

based Analysis of ChIP-seq (MACS) (Zhang et al., 2008), retaining those called

at p < 1E-4 in at least three pseudo-replicate samples. Those whose read dis-

tribution was significantly different from Elk-1 ChIP-seq, performed on TKO

MEFs transduced with empty vector, were identified using Deseq (minimal in-

crease 1.5-fold, p% 0.05) and retained for further study. This approach has an

effectively negligible false discovery rate (FDR). HOMER was used for motif

discovery in sequences ± 100 bp from the ChIP-seq peaks or DHS peaks.

Hi-C Analysis

This analysis used the HOMER Hi-C analysis pipeline (http://homer.salk.edu/

homer/interactions). Reads from NCBI SRA: SRX554530 (Battulin et al.,

2015), and GEO: GSM1648486 and GSM1696042 (Minajigi et al., 2015) were

aligned to the mouse genome (Imakaev et al., 2012). A ‘‘universe’’ of

�1.3million significant interactions at 10-kb-resolution interactions was deter-

mined, taking into account linear genomic distance and sequencing depth

(p % 0.05 and Z score R 2). Chromosomal regions exhibiting preferential in-

teractions were identified by using the automated PCA analysis on Hi-C data

in HOMER (runHiCpca.pl), retaining those with a PCA score >100. Interactions

mapping at all RefSeq-annotated TSSs (�130,000) were retrieved using the

annotateInteractions.pl pipeline.
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