
Medical records of our first five
consecutive eyes of five patients (mean
age: 60 � 9.34 years; three males) with
corneal endothelial decompensation
and complex anatomic anterior
segment disorders (Table S1) in which
UT-DSAEK using the SLc Expert
Microkeratome� was performed
between March and July 2015 were
analysed retrospectively.

Targeted central thickness of the
resulting donor lamella was defined
before preparation ranging from 50 to
80 lm. Central and peripheral corneal
thickness (3 mm from centre) was deter-
mined by AS-OCTmeasurements along
four meridians before and directly after
preparation. Deviations from the tar-
geted central graft thickness as well as
differences between peripheral and cen-
tral graft thickness were calculated.
Obtained differences from eight periph-
eral measuring points to central thick-
ness measurements were divided into
two groups (0–135° and 180–315°) to
investigate uniformity in thickness rela-
tive to cut direction.

Clinical outcome parameters in-
cluded best spectacle-corrected visual
acuity (BSCVA; logMAR), endothelial
cell density (ECD; Tomey EM-3000,
Erlangen, Germany), central corneal
thickness (CCT) and graft thickness
measured by AS-OCT (SPECTRALIS�

Anterior Segment Module, Spectral-
Domain OCT, Heidelberg Engineering
GmbH, Heidelberg, Germany) before
surgery as well as 1 and 3 months
postoperatively.

All five donor preparations were
successfully performed. Deviations
from the central targeted thickness
were below 19.5 lm at any time
(Table S1). The difference between
peripheral and central graft thickness
averaged along eight meridians was
44.1 � 16.7 lm regardless of the cut-
ting direction.

In two eyes, partial graft detachment
necessitated a second intracameral air
injection; no further complications
occurred.

MeanpreoperativeBSCVAimproved
from 1.56 � 0.67 logMAR to 0.92 �
0.79 logMAR at 3 months. Endothelial
cell density (ECD) of donor buttons was
2804 � 228.3 cells/mm² preoperatively
and 1489.8 �336.3 cells/mm² at
3 months (Table S1). Central corneal
thickness (CCT) was 815.7 � 222.2 lm
preoperatively and 562.8 � 99.0 lm
postoperatively with a hosts’ corneal

thickness without the donor lamella of
527.9 �82.5 lm.

Descemet Stripping Automated
Endothelial Keratoplasty (DSAEK)
grafts prepared using microkeratomes
are typically thinner centrally than
peripherally, resulting in a hyperopic
shift (Dupps et al. 2008; Scorcia et al.
2009). Our results showed compara-
tively uniformity in graft thickness
which may suggest that the uniform
profile of UT-DSAEK grafts prepared
by the SLc Expert microkeratome may
have less impact on sphere and aber-
rations than ‘standard’ DSAEK grafts
(Rudolph et al. 2012).

Our case series is limited by the small
sample size; however, we can conclude that
graft preparation with the SLc Expert
Microkeratome�, and the subsequent
transplantation of these very thin grafts
even in eyeswith complex anterior segment
pathologies seems to be safe and
reproducible. Further clinical studies are
desirable to evaluate the practicability and
the clinical results of this novel technique
particular in relation to DMEK.
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Table S1. Demographic data of UT-
DSAEK recipients and summary of
results.
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Editor,

B irdshot chorioretinopathy (BSCR)
represents an intraocular bilateral

and chronic inflammation of the pos-
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terior segment of the eye. The patho-
genesis has not been completely eluci-
dated. Recent publications suggested
that T cells of BSCR patients produce
IL-17 in response to human retina and
choroid lysate (Kuiper et al. 2013,
2014). Moreover, IL-12 and IL-23,
two cytokines known to promote
Th17 pathway, were shown to be
increased in sera of BSCR patients
(Yang & Foster 2013). Dagur et al.
(2014) described in 11 BSCR patients
an increase of CD8+CD146+ T cells, a
population producing IL-17 (Tc17).

No data is available on B and NK
cells in BSCR. Given the few therapeu-
tic options available for this disease, a
better comprehension of BSCR is
important. Therefore, we conducted a
prospective pilot study to determine

Th17, Tc17, Th1 and Treg cell levels
and the composition of B and NK cells
in peripheral blood of patients with
BSCR.

To be included, patients had to meet
the BSCR criteria of the 2006 Interna-
tional Consensus Conference. Exclu-
sion criteria were other inflammatory
or autoimmune diseases, malignant
neoplasm and infection. Patients were
divided into those who received a
systemic therapy (past or current) and
those who were never treated. We
recruited controls from the hospital
emergency department with a diagnosis
of traumatic corneal abrasions. This
research was approved by the Institu-
tional Ethics Committee. Peripheral
blood mononuclear cells (PBMCs)
were isolated by the Ficoll method. B,

NK, NKT and Treg cells were assessed
without any activation. Treg cells were
defined as CD4+CD25hiCD127lo/- T
cells. Th1 (CD4+IFNg+), Th17
(CD4+IL-17A+) and Tc17
(CD8+IL-17A+) cells were assessed
after PBMCs culture in RPMI 1640
medium with 10% FCS for 4 hours
with PMA (0. mg/ml), ionomycin
(0.5mg/ml) and brefeldin A (10mg/ml).

We included 16 controls and 29
patients with BSCR – 16 who received
systemic therapy (current or past) and
13 never treated. Patient characteristics
are summarized in Table 1. B, Th1,
Tc17 and NK cell subsets were similarly
distributed in the three groups. Con-
versely, the proportion of Th17 cells
was higher in never treated BSCR than
in controls (p = 0.009), with no differ-

Table 1. Patient characteristics and comparison of lymphocyte populations in patients with BSCR and controls.

Controls

Previous or current

systemic therapy Never treated

Kruskall–Wallis

p-value

Number 16 16 13 –
Age (year) 44 (33–54) 56 (49–65) 54 (51–56) –
Female, n (%) 9 (56) 5 (31) 5 (39) –
Disease duration (year) NA 8 (4–18) 2 (1–2) –
Visual acuity (log) NA 0.26 (0.10–0.70) 0.00 (0.00–0.10) –
Visual field NA 5.35 (2.60–9.50) 0.20 (�2.07–4.10) –
Electroretinogram B (5 dB) NA 73 (20–120) 238 (141–387) –
Electroretinogram B (25 dB) NA 24 (0–71) 98 (73–165) –
Log-CRP (mg/dl) NA 0.13 (�0.51–0.61) 0.34 (�0.04–0.60) –
Cell populations

Leucocytes (/mm3) 6.4 (5.2–7.7) 7.1 (5.7–7.9) 5.7 (4.5–6.8) 0.096

CD19+ B cells 27 (23–48) 22 (12–39) 28 (20–42) 0.306

CD8+ T cells 497 (400–977) 516 (319–621) 540 (408–610) 0.847

CD4+ T cells 573 (486–829) 493 (371–706) 512 (294–661) 0.152

NK cells 193 (135–562) 237 (192–655) 203 (172–275) 0.619

NK T cells 124 (102–208) 80 (52–201) 161 (130–198) 0.194

Na€ıve B cells (% CD19+) 64 (49–76) 65 (49–74) 65 (63–72) 0.815

IgD+ CD27�

Transitional B cells (% CD19+) 5.0 (3.9–6.6) 4.8 (3.5–7.1) 5.5 (4.6–10.7) 0.265

CD24hi CD38hi

Memory B cells (% CD19+)

CD27+ 37 (31–44) 35 (24–44) 34 (29–37) 0.747

IgD+ CD27+ unswitched 15 (13–19) 14 (11–25) 17 (13–21) 0.626

IgD� CD27+ switched 17 (12–25) 13 (11–19) 14 (9–18) 0.133

T cells (% CD4+)

Th1 (CD4+ IFNc+) 14.55 (11.33–18.9) 12.75 (8.56–17.10) 10.90 (9.19–19.10) 0.648

Th17 (CD4+ IL-17A+) 0.92 (0.84–1.07) 1.10 (0.81–1.47) 1.28 (0.97–1.71) 0.032 a,b,c

Tc17 (CD8+ IL-17A+) 0.35 (0.16–0.59) 0.36 (0.32–0.63) 0.38 (0.30–0.62) 0.592

T regulatory cells (CD25hi CD127lo) 1.34 (0.95–1.59) 1.76 (1.49–2.38) 2.52 (1.37–2.75) 0.003
d,e,f

NK cells

CD56dim CD16bri 2.2 (1.3–2.5) 1.5 (1.1–2.4) 1.9 (1.5–2.6) 0.567

CD56bri CD16dim 60 (50–68) 56 (50–63) 57 (51–75) 0.858

Results are expressed in medians (IQR25-75). Cells were assessed without any stimulation, except for Th1, Th17 and Tc17 cells that were measured

after ionomycin + PMA + brefeldine A. Visual acuity, visual field and electroretinogram of right eye are given.

n = number; y = years.
ap value comparing control versus previous or current systemic therapy = 0.336; bp value comparing control versus never treated = 0.009; cp value

comparing previous or current systemic therapy versus never treated = 0.081; dp value comparing control versus previous or current systemic

therapy = 0.014; ep value comparing control versus never treated = 0.001; fp value comparing previous or current systemic therapy versus never

treated = 0.280.
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ence between treated BSCR and con-
trols (p = 0.08). The proportion of
CD4+CD25hiCD127lo/� T cells was
higher in treated BSCR and untreated
BSCR than in controls (p = 0.003).
Levels of Th17 and CD4+CD25hiC-
D127lo/� T cells were not significantly
different between treated and untreated
BSCR. All the results are summarized
in Table 1. We did not find any associ-
ation between levels of Th17 and
CD4+CD25hiCD127lo/� T cells and
clinical data such as visual field
(p = 0.30 and p = 0.91, respectively),
visual acuity (p = 0.12 and p = 0.18,
respectively) or electroretinogram
data (p = 0.83 and p = 0.71, respec-
tively).

In conclusion, this study is one of
the first to broadly explore lympho-
cytes in BSCR patients. Whereas we
did not find significant abnormalities in
proportions of Th1, Tc17, B and NK
cells, we found an increase of Th17 and
CD4+CD25hiCD127lo/- T cells. The
increase proportion of Th17 cells is
concordant with previous results (Kui-
per et al. 2011). The increase propor-
tion of Treg cells was unexpected since
there is usually an inverse correlation
between Th17 and Treg cells. Foster

et al. (2013) did not find any difference
in CD4+CD25hi Treg cells between
BSCR patients (n=5) and controls but
a decreased expression level of FoxP3.
The present study explored a larger
number of BSCR patients but further
studies are required to confirm this
Treg cell increase. The increased pro-
portion of Treg cells, however, may not
reflect their function, which remains to
be explored.
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