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Host cell metabolism regulates viral infection. In this issue of Cell Chemical Biology, Kulkarni et al. (2017)
reveal the importance of oxygen concentrations and glycolysis in the reactivation of human T cell leukemia
virus (HTLV-1). Identifying the host metabolic networks that regulate infection will foster our understanding of
HTLV-1-associated pathologies.
CD4 T lymphocytes are a major target

of both HIV-1 and human T cell leukemia

virus (HTLV-1) human retroviruses.

Although extensive research has focused

on the importance of antigen, cytokine,

and chemokine receptor signals in pro-

moting infection and virus reactivation,

more recent studies have demonstrated

the critical nature of the intracellular meta-

bolic environment. Nutrients are essential

for all cells, conditioning their survival,

proliferation, and differentiation. Further-

more, distinct cell types exhibit disparate

nutrient requirements, and infection is

often accompanied by a metabolic re-

programming of host cells. Identifying

the diverse metabolic networks that pro-

mote viral infection and activation, within

the context of specific host cell subsets,

will foster the development of new thera-

peutic strategies that target the metabolic

demands of the virus.

In this issue of Cell Chemical Biology,

Bangham and colleagues elegantly de-

monstrate the importance of the cell’s

metabolic state in regulating HTLV-1 reac-

tivation in primary cells from infected indi-

viduals (Kulkarni et al., 2017). Whereas the

vast majority of ex vivo infection studies

are performed in atmospheric oxygen con-

ditions (20% O2), the oxygen tensions to

which lymphocytes are exposed within

lymphoid organs are significantly lower,

typically on the order of 1%–5% (Caldwell

et al., 2001). Kulkarni et al. (2017) studied

non-stimulated PBMCs from HTLV-1-

infected patients in the presence of

1%–2% oxygen and found that these

more physiological concentrations signifi-

cantly enhance HTLV-1 reactivation, as

monitored by increased transcripts of the

viral Tax oncoprotein, amarker of viral acti-

vation. The authors first hypothesized that

reactivation was due to the activity of the
hypoxia-inducible factor (HIF-1a); how-

ever, this is not likely to be correct because

they found that stabilization of HIF-1a

actually decreased the level of Tax tran-

scripts. HIF-1a was stabilized by inhibiting

its hydroxylation by prolyl hydroxylases

(PHDs). PHDs are dependent on the

metabolite a-ketoglutarate (a-KG), and

the authors treated PBMCs with dimethy-

loxalylglycine (DMOG), a competitive

a-KG mimetic. Notably though, the

authors discovered that HTLV-1 minus-

strand transcription, monitored as a func-

tion of levels of the HBZ (HTLV-1 basic

leucine zipper factor) antisense transcript

(Gaudray et al., 2002), is significantly

augmented in the presence of this a-KG

antagonist. It is therefore tempting to

speculate that HBZ and Tax transcripts

are differentially regulated by one or

more of the >60 a-KG-dependent

(DMOG-inhibited) dioxygenases, a group

of epigenetic enzymes that includes

JmjC-domain-containing histone deme-

thylases (KDMs) and the TET (ten-eleven

translocation) family of DNA hydroxylases

(Zdzisi�nska et al., 2017). Thus, the

data presented by Kulkarni et al. (2017)

highlight the potential of epigeneticmodifi-

cations to control the relative levels of

plus-strand versus minus-strand HTLV-1

transcription.

The authors followed up on these exper-

iments by assessing the importance of

different metabolic pathways in HTLV-1

plus-strand transcription. They revealed

glucose-dependent aerobic glycolysis to

be a prerequisite for the efficient transcrip-

tion of Tax. It is interesting to hypothesize

that the metabolic demands of HTLV-1

alter the function of its host T cell, a pro-

posal that is supported by recent data

demonstrating that competition between

T cells and tumor cells for limiting amounts
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ofglucosealters theeffector functionof the

former (reviewed in Buck et al., 2017).

While Kulkarni et al. (2017) did not assess

the role of nutrients other than glucose in

HTLV-1 reactivation, amino acids such as

glutamine, leucine, and arginine also

play important roles in CD4 T cell prolifera-

tion (Buck et al., 2017), and decreasing

alanine transport through theSNAT1 trans-

porter has recently been shown to limit the

activation ofHIV-1-infectedT lymphocytes

(Matheson et al., 2015).

Within the CD4 T cell compartment,

specific subsets exhibit distinct bioener-

getic requirements, potentially leading

to differences in their susceptibility

to HTLV-1 infection and/or the persis-

tence/reactivation of virus. Regulatory

Foxp3+CD4+ T cells are a main reservoir

for HTLV-1 in the context of pathologies

such as HTLV-1-associated myelopathy/

tropical spastic paraparesis (HAM/TSP),

and this subset displays a lower reliance

on glycolysis than CD4 effector popula-

tions (Michalek et al., 2011). It is intriguing

to consider the possibility that the

increased lipid metabolism of regulatory

T cells makes them less sensitive to an

HTLV-1-mediated skewing of glycolytic

intermediates toward virus-specific func-

tions. It will therefore be important to

evaluate the hypothesis that HTLV-1 reac-

tivation is differentially fostered by the

metabolic environment(s) of specific CD4

T cell subsets. It will also be critical to

determine whether metabolic changes in

HTLV-1-infected cells are associated with

the progression of infected individuals

from an asymptomatic carrier state (ac-

counting for 90% of individuals) to an

aggressive T cell leukemia (2%–3%) or

HAM/TSP (0.25%–3%). Indeed, a large

subset of HTLV-1-associated diseases

can be grouped under the umbrella of
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inflammatory pathologies, and it is

possible that they are linked to HTLV-1-

associatedmetabolic alterations in regula-

tory T cells.

Infection of cells by HTLV-1 requires

viral binding and entry via the GLUT1

glucose transporter (Manel et al., 2003),

and GLUT1 transcription is induced under

conditions of hypoxia, at least in part via

HIF1-a signaling. Irrespective of its role

in HTLV-1 entry, GLUT1-mediated

glucose uptake is necessary for the

optimal proliferation and function of

human CD4 T cells with these metabolic

effects promoting infection by HIV-1, a

retrovirus that enters lymphocytes in

a GLUT1-independent manner (Loisel-

Meyer et al., 2012). In line with significant

metabolic differences between activated

effector and regulatory CD4 T cell sub-

sets, GLUT1 is expressed at significantly

higher levels on the former (Michalek

et al., 2011). In the context of a productive

HTLV-1 infection, expression of the HTLV

envelope glycoprotein would be expected

to block GLUT1-mediated glucose uptake

and lead to a subsequent decrease in

lactate secretion. The glycolysis that is

required for HTLV-1 transcription, leading

to an increased expression of the HTLV-1
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envelope (Env) glycoprotein, would then

act as a negative feedback loop, inhibiting

GLUT1-mediated glucose transport. This

potential in vivo metabolic switch led to

the hypothesis that HTLV-1-infected indi-

viduals may develop HAM/TSP because

of an Env-mediated impairment of glycol-

ysis in glial cells, resulting in a decreased

secretion of lactate and a detrimental

impact on neurons (Manel et al., 2004).

Indeed, lactate is a major energy sub-

strate in neurons, and glucose meta-

bolism in astrocytes is coupled to the

neuronal uptake of lactate from the extra-

cellular environment (Pellerin et al., 1998).

Further studies evaluating the interplay

between glucose metabolism, HTLV-1 re-

activation, and HTLV Env-GLUT1 interac-

tions will undoubtedly provide novel in-

sights into our understanding of the

pathophysiology of HTLV-1-associated

diseases.
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