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SUMMARY

Of all cells, human erythrocytes express the highest
level of the Glut1 glucose transporter. However, the
regulation and function of Glut1 during erythropoiesis
are not known. Here, we report that glucose transport
actually decreases during human erythropoiesis de-
spite a >3-log increase in Glut1 transcripts. In con-
trast, Glut1-mediated transport of L-dehydroascorbic
acid (DHA), an oxidized form of ascorbic acid (AA),
is dramatically enhanced. We identified stomatin, an
integral erythrocyte membrane protein, as regulating
the switch from glucose to DHA transport. Notably
though, we found that erythrocyte Glut1 and associ-
ated DHA uptake are unique traits of humans and the
few other mammals that have lost the ability to synthe-
sizeAA from glucose. Accordingly, we showthatmice,
a species capable of synthesizing AA, express Glut4
but not Glut1 in mature erythrocytes. Thus, erythro-
cyte-specific coexpression of Glut1 with stomatin
constitutes a compensatory mechanism in mammals
that are unable to synthesize vitamin C.

INTRODUCTION

Glucoseprovides a keysupply of energyandcarbon for all living or-

ganisms and its transport is a universally conserved property. Ver-

tebrate glucose transporters belong to theGlut familyof multimem-

brane-spanning facilitative transporters. The first identified protein

of this family, Glut1, is a type 2 integral membrane protein com-

posed of 12 transmembrane domains that delineate six extracellu-

lar loops (Mueckler et al., 1985). Fourteen Glut isoforms have now

been identified in the human genome but Glut1 is the main func-

tional transporter of glucose in most transformed cells as well

as in various hematopoietic cell lineages (Mueckler, 1994, 1985).

The Glut1 transporter isalsocrucial for facilitatingglucose transport

in thebrain; ahaploinsufficiencyofGlut1 results in infantileseizures,

delayed development, and microcephaly (Seidner et al., 1998).
Glut1 also transports L-dehydroascorbic acid (DHA), an oxi-

dized intermediate of ascorbic acid (AA) (Bianchi and Rose,

1986; Rumsey et al., 1997; Vera et al., 1993). DHA entry via Glut

family transporters was initially investigated because of the struc-

tural similarities betweenDHAand glucose.Once transported into

the cell, DHA is immediately reduced to AA allowing a recycling

of ascorbate (May, 1998). The uptake of AA into cells is mediated

by a distinct class of transporters; sodium-dependent vitamin C

transporters (SVCT1 and SVCT2) whose expression profiles differ

from those of Glut family members (Tsukaguchi et al., 1999). AA

is essential for maintaining plasma and tissue reductive capacity,

removing superoxide via its own oxidation into DHA.

Of all cell lineages, the human erythrocyte expresses the high-

est level of the Glut1 transporter, harboring greater than 200,000

molecules per cell. Moreover, in the context of the red cell mem-

brane, Glut1 accounts for 10% of the total protein mass (Helger-

son and Carruthers, 1987; Mueckler, 1994). Here, we show that

in erythrocytes, Glut1 preferentially transports DHA rather than

glucose. The switch from glucose to DHA transport is associated

with an induction of stomatin, an integral erythrocyte membrane

protein. Accordingly, in a patient with overhydrated hereditary

stomatocytosis (OHSt), a rare genetic disorder of red cell mem-

brane permeability wherein stomatin is only present at low levels,

DHA transport is decreased by 50% while glucose uptake is

significantly increased. Erythrocyte-specific Glut1 expression

and DHA transport are specific traits of the few vitamin C-defi-

cient mammalian species, encompassing only higher primates,

guinea pigs and fruit bats. Indeed, adult mice erythrocytes do

not harbor Glut1 and do not transport DHA. Rather, Glut4 is ex-

pressed on their RBC. Thus, the concomitant induction of Glut1

and stomatin during erythroid differentiation constitutes a com-

pensatory mechanism in mammals that are unable to synthesize

the essential AA metabolite.

RESULTS

Glut1 Expression Increases during
Human Erythropoiesis
Erythropoietin (EPO)-stimulated erythropoiesis of human CD34+

progenitors resulted in the appearance of erythroid progenitors,
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Figure 1. Glut1 Is a Late Marker of Erythro-

cyte Differentiation

CD34+ progenitors were isolated from UC and

amplified in the presence of SCF, IL-3 and IL-6

prior to induction of erythropoiesis by addition of

rEPO (noted as Day 0).

(A) At the indicated time points, cell morphology

was monitored by May-Grünwald-Giemsa stain-

ing of cytocentrifuged smears. Expression of the

erythrocyte-associated cell surface markers, the

CD71 transferrin receptor and glycophorin A

(GPA) was evaluated with the appropriate fluoro-

chrome-conjugated mAbs. Surface Glut1 expres-

sion was determined using an eGFP-tagged

HTLV receptor-binding domain (HRBD) fusion pro-

tein (Kim et al., 2004) that specifically binds this

transporter (Manel et al., 2003a, 2005). Control

stainings are presented as shaded histograms.

(B) Total Glut1 protein levels were evaluated in

progenitor cells following induction of erythropoie-

sis by immunoblot analysis. CD34+ cells ex-

panded in the absence of rEPO as well as Jurkat

cells were added as controls. Protein loading

was monitored by actin staining.

(C) Glut1 transcripts were quantified at the indi-

cated time points during erythropoiesis by qRT-

PCR. cDNAs were amplified with Glut1-specific

primers in triplicate samples and normalized to

GAPDH. The means ± SD are shown on semiloga-

rithmic graphs.
as monitored by cell morphology. Markers used to assess

the progression of erythropoiesis included glycophorin A (GPA)

and the transferrin receptor CD71 (Figure 1A). Glut1 was not

detected on immature progenitors but was induced on cells of

the basophilic erythroblast stage, increasing further on more ma-

ture acidophilic erythroblasts (cells with light cytoplasm in upper

panel, Figure 1A). Double staining for GPA and Glut1 showed

that GPA expression preceded that of Glut1 but both markers

then remained elevated throughout the differentiation process

(Figure 1A, bottom panel). Glut1 expression was confirmed by

western blot analysis using a Glut1 specific pAb, demonstrating

that surface Glut1 expression was concordant with total protein

levels (Figure 1B). Indeed, Glut1 was not detected on CD34+

cells expanded in the absence of EPO. The relative mobility of

Glut1 increased during erythropoiesis, consistent with a loss of

glycosylation as previously reported (Mueckler, 1994). The

‘‘smear-like’’ pattern of Glut1 is specific for the erythroid process

as a single sharp band was detected in Jurkat cells (Figure 1B).

Moreover, Glut1 mRNA, present only at the limit of detection in

immature progenitors, increased by 2-logs following 5 days of

EPO-induced differentiation and increased by an additional log

at day 12 (Figure 1C). Thus, Glut1 expression in differentiating

erythroblasts is highly regulated at the mRNA level and its ex-

pression is characteristic of progenitors that have progressed

through the basophilic erythroblast stage.

DHA Transport Is Preferentially Augmented during
Human Erythropoiesis
Given the function of Glut1 as a sugar transporter (Mueckler

et al., 1985), we first assessed whether the observed increase

in Glut1 on differentiating erythroblasts was associated with
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enhanced glucose transport. Glucose transport kinetics were

monitored using the nonhydrolyzable 2-deoxy-D[1-3H]glucose

(2-DG) analog. Deoxyglucose is trapped in erythrocytes follow-

ing its phosphorylation to deoxyglucose-6-phosphate whereas

the nonphosphorylated deoxyglucose can be imported as well

as exported via Glut1. Transport and accumulation can therefore

be discriminated by performing uptake assays for extremely

short periods (Vera et al., 1995). Importantly, during time points

wherein uptake at RT was in the linear range, 15–60 s, 2-DG

uptake was drastically reduced between day 0 and day 8 of

erythroid differentiation (Figure 2A). Moreover, upon more ex-

tended analysis of 2-DG uptake between 1 and 1200 s, the slope

of 2-DG transport was significantly decreased upon erythroid

differentiation (Figure 2A). Indeed, glucose uptake decreased

throughout the 12 day erythroid differentiation (Figure 2B).

This result was surprising and prompted us to test the trans-

port of the second Glut1 substrate, DHA (Bianchi and Rose,

1986; Rumsey et al., 1997; Vera et al., 1993). Importantly, DHA

uptake was enhanced during erythropoiesis, as assessed in

transport assays performed between 15 and 60 s (Figure 2A).

This increase was significant by day 8 and was verified in ex-

tended time course assays ranging from 1 to 1200 s (Figure 2A).

Indeed, changes in DHA uptake were inversely proportional to

glucose uptake (Figures 2A and 2B).

To address the question of whether DHA uptake is competed

by glucose during erythropoiesis, we measured the effect of cold

glucose on the uptake of radiolabeled DHA during the erythroid

differentiation period. Prior to addition of erythropoietin, cold glu-

cose significantly inhibited DHA uptake, as expected for a com-

peting ligand (Figure 2C). However, by day 8 of differentiation,

a time point at which Glut1 had been upregulated on the vast



Figure 2. Induction of Glut1 on Human

Erythrocytes Results in Enhanced DHA,

but Not Glucose, Uptake

(A) To assess glucose and DHA transport kinetics

during erythropoiesis, progenitors obtained after

0, 8, and 12 days of ex vivo rEPO stimulation

were incubated with either the nonhydrolyzable

glucose analog 2-deoxy-D[1-3H]glucose (2-DG)

or [14C]DHA for 15, 30, and 60 s at RT (upper

panels). At days 0 and 8 of erythroid differentiation,

[3H]2-DG and [14C]DHA uptake was monitored for

1, 15, 30, 60, 300, 600, and 1200 s (lower panels).

(B) Glucose and DHA transport in erythroid progen-

itors obtained on days 0, 5, 8, and 12 of erythropoi-

esis were assayed during a 10 min uptake at RT.

(C) [14C]DHA uptake was monitored for 10 min at

RT in progenitors differentiated for 0, 2, 5, 8, 12,

and 15 days, in the absence or presence of 5 mM

cold glucose. At each time point, DHA uptake in

the absence of glucose was defined as 100%,

and the relative incorporation in the presence

of glucose is shown.

(D) The effect of 5 mM cold glucose on [3H]2-DG

and [14C]DHA transport was monitored in Jurkat

cells and peripheral blood RBC in uptake assays

performed for 1, 15, 30, 60, 300, 600, and 1200 s.

All data are presented as mean CPMs of triplicate

samples. Error bars represent SD.
majority of differentiating erythroblasts (Figure 1A), DHA uptake

was not inhibited by the addition of a 10-fold higher concentra-

tion of glucose (Figure 2C). Moreover, the importance of a Glut

transporter in the uptake of both glucose and DHA was demon-

strated by a 70%–80% transport inhibition following treatment of

progenitors with cytochalasin B (CytB), a molecule that abro-

gates Glut1 function by directly binding to its sugar export site

(Hebert and Carruthers, 1992) (Figure S1 available online). There-

fore, the presence of Glut1 on differentiating erythrocytes results

in an increased DHA transport that is not sensitive to competition

by physiological levels of extracellular glucose.

Our results, showing a differential uptake of glucose and DHA,

were initially difficult to reconcile with previous research in

Xenopus oocytes and mammalian cell lines indicating that DHA

and glucose competitively bind Glut1 (Rumsey et al., 1997;

Vera et al., 1993, 1995). We therefore assessed whether glucose

competitively inhibits DHA uptake in mature erythrocytes. As

expected, cold glucose competitor inhibited the uptake of

the radio-labeled glucose analog in RBC (Figure 2D and Figure

S2). RBC uptake of the nonmetabolizable glucose analog,

3-O-methylglucose, was also inhibited by the addition of cold

glucose, under conditions of uptake extending for more than

60 s (data not shown). Additionally, as anticipated from previ-

ously published studies (Rumsey et al., 1997; Vera et al.,

1995), cold glucose inhibited radio-labeled DHA uptake in non-

erythroid cells. In striking contrast, cold glucose did not diminish

DHA transport in RBC; uptake was actually higher than that de-

tected in its absence (Figure 2D and Figure S2). The increased

uptake of DHA in the presence of glucose is likely a reflection

of an increased reduction of DHA to AA, as the latter form is se-

questered (May et al., 2001). Notably though, our finding that

cold glucose does not inhibit DHA accumulation in mature eryth-

rocytes, even at short 15–60 s time points wherein transport is
linear (Figure 2A), indicates that glucose is not an inhibitor of

the DHA transport process in mature human erythrocytes.

Because glucose did not compete with DHA for transport, we

next assessed whether the transports of both these solutes in

RBC were mediated by a Glut-type glucose transporter. In agree-

ment with previous reports (Helgerson and Carruthers, 1987;

Mueckler, 1994), CytB inhibited glucose as well as DHA transport

in RBC by > 90%. This CytB effect was specific as neither glu-

cose nor DHA transport was decreased by the related non-Glut

binding molecule, cytochalasin D (Figure S3). Nonetheless, as

CytB can interfere with glucose transport by other Gluts, these

data left open a potential role for other Glut molecules in the dif-

ferential glucose/DHA uptake described here. It was therefore

important to study the expression, as well as changes in the ex-

pression profiles, of all glucose-transporting Gluts during eryth-

ropoiesis. To this end, we designed primers allowing amplifica-

tion of the different Glut mRNAs and monitored the levels of

their transcripts during ex-vivo erythropoiesis. As presented in

Figure 3A, qRT-PCR analyses of Glut1–8 and 10–14 demon-

strated Glut1 to be the only mRNA to be significantly upregulated

following rEPO stimulation of CD34 progenitors. These data

strongly suggest a specific role for Glut1 in the differential

glucose/DHA transport that we observed during human eryth-

ropoiesis as well as in mature RBC.

Stomatin Regulates Glut1 Transport
As shown above Glut1-mediated DHA uptake in human erythro-

cytes is distinctive in that it is not competed by glucose. Thus,

either differences in Glut1 itself and/or differences in Glut1 part-

ners account for the specific inability of glucose to inhibit DHA

uptake in erythrocytes. Notably, the N-glycosylation modifica-

tion of Glut1 at Asn45 has been shown to be distinctive of eryth-

rocytes (Mueckler, 1994). Nevertheless, mutation of this site did
Cell 132, 1039–1048, March 21, 2008 ª2008 Elsevier Inc. 1041



not alter either glucose or DHA transport. Moreover, mutation of

a second site, Q161, known to negatively affect glucose uptake,

similarly inhibited DHA uptake (Figure S4).

In RBC, the only Glut1 partner that has been identified is sto-

matin (Zhang et al., 1999). The latter protein is expressed at high

levels with a reported 105 molecules per erythrocyte. The regula-

tion of stomatin expression during hematopoiesis has not been

extensively studied but it has been reported that CD34-differen-

tiated erythroid progenitors become stomatin-immunopositive

(Fricke et al., 2005). Here, we determined that stomatin tran-

scripts, present at only extremely low levels in nondifferentiated

progenitors, increased by 10-fold following 5 days of EPO-

induced erythropoiesis, a time point at which basophilic erythro-

blasts were detected. Upon a further 7 days of differentiation,

stomatin transcripts were augmented by a 100-fold and stomatin

protein, not detected in primitive progenitors, was upregulated

upon erythroid differentiation (Figure 3B).

These data show that stomatin expression is induced under

conditions wherein DHA uptake increases and becomes insensi-

tive to glucose competition. In this regard, it is notable that

the association of Glut1 with stomatin has been reported to de-

crease Glut1-mediated glucose uptake by 30%–70%, at least

in some cell types (Kumar et al., 2004; Zhang et al., 2001). It

was therefore of interest to determine whether, in contrast to

its role in glucose uptake, stomatin may function to enhance

Glut1-mediated DHA uptake. To this end, stomatin was intro-

duced into A431 cells, a human cell line expressing only low

levels of stomatin. As shown in Figure 4A, introduction of stoma-

tin did not significantly alter cell surface or total Glut1 levels.

Indeed, no correlation between stomatin and Glut1 levels was

Figure 3. Glut1 and Stomatin Transcripts Are Specifically Increased

during Human Erythropoiesis

(A) Transcripts of Glut1–8 and 10–14 were assessed in CD34+ progenitor cells

differentiated toward the erythroid lineage for 0, 2, 5, 8, and 12 days by

qRT-PCR. cDNAs were amplified with primers specific for the various Gluts

in triplicate samples and normalized to GAPDH.

(B) Stomatin transcripts were assessed by qRT-PCR at the same time points,

and means ± SD are shown. Stomatin protein levels were monitored by immu-

noblot analysis.
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detected in nonerythroid cells (data not shown). Notably though,

Glut1 associated with stomatin in transfected cells as demon-

strated by their coimmunoprecipitation (Figure S5). Transport

of both 2-DG and DHA into A431 cells were linear at time points

ranging from 15 to 300 s (Figure S6). We therefore assessed con-

comitant glucose and DHA uptake at 30 and 300 s and deter-

mined that stomatin expression effectively decreases glucose

transport to 70%–80% of control levels while enhancing DHA

transport by 130%–200% (Figure 4A and data not shown). These

data indicate a role for stomatin in the relative efficacy of DHA

and glucose transport.

To verify that the role of stomatin in DHA transport was medi-

ated by Glut1, siRNAs directed against the Glut1 30UTR were

transfected into A431-stomatin cells. This resulted in a 50%–

70% decrease in both total and cell surface Glut1 expression

without modulating stomatin expression (Figure 4B). To test

whether DHA and glucose transport were similarly affected by

Glut1 silencing in the presence of stomatin, uptake assays

were performed at 30 and 300 s. Indeed, both DHA and glucose

transport were similarly decreased in siRNA-treated A431-sto-

matin cells, by means of 67% for 2-DG and 64% for DHA in a rep-

resentative experiment (Figure 4B and data not shown). Thus,

the effects of stomatin on DHA and glucose transport in these

A431-transfected cell are mediated via Glut1.

Stomatin expression is diminished in erythrocytes from pa-

tients with OHSt. In this rare genetic disorder of red blood cell

membrane permeability, the dramatically reduced stomatin

expression is an indirect consequence of a mutation that has

not yet been identified (Delaunay, 2004). We found that surface

and total Glut1 levels were equivalent on control and RBC from

two different OHSt patients (Figure 4C). As previously reported,

the reduction in stomatin expression between OHSt patients

is variable, as seen in Figure 4C. Notably, glucose and DHA

transport in these RBC was consistent with that observed in

the stomatin-overexpressing cell line: At 10 min, glucose uptake

was significantly higher in the OHSt RBC as compared to control

RBC while there was a concomitant 40% reduction in DHA trans-

port (Figure 4C). Moreover, under the same conditions, DHA

uptake was also lower in OHSt RBC from a second patient as

compared to an RBC sample with equivalent reticulocyte counts

(sickle cell anemia; data not shown). Altogether, these observa-

tions demonstrate that stomatin inversely regulates the relative

transports of glucose and DHA by Glut1.

Glut4 but Not Glut1 Is Expressed
in Adult Murine Erythrocytes
Sugar transport in RBC has been shown to be significantly higher

in humans than in other species, and this is assumed to be due

to a higher Glut1 density on human RBC (Lowe and Walmsley,

1986). Unexpectedly, Glut1 was not detected in RBC from

mice over 25 days of age even though expression was readily

detectable in newborn murine erythrocytes (Figure 5A). As this

result was very surprising, it was important to determine whether

the loss of detectable Glut1 protein was due to changes in Glut1

transcription. To this end, Ter119+ splenic erythroid precursors

were purified and Glut1 transcripts monitored by qRT-PCR.

Glut1 mRNA levels decreased by more than 10-fold between

day 2 and day 5 of life and were not detectable in adult



Figure 4. Stomatin Negatively Modulates

Glut1-Mediated Glucose Uptake and En-

hances DHA Uptake

(A) Stomatin and Glut1 levels in A431 cells and

A431 cells stably transfected with a stomatin

expression vector (A431-stomatin) were analyzed

by intracellular staining with the appropriate Abs.

Control IgG staining is shown as shaded histo-

grams. Surface Glut1 was detected using the

eGFP-tagged HRBD fusion protein. [3H]2-DG and

[14C]DHA transport were assessed concurrently

in the parental and stomatin-transfected A431

cell lines (30 s at RT), and data from triplicate sam-

ples ± SD are shown.

(B) The A431-stomatin cell line was transfected

with an irrelevant siRNA (luciferase; luc) or a mix-

ture of Glut1 specific siRNAs. Surface and total

Glut1 levels were monitored 72 hr posttransfec-

tion. Shaded histograms show nonspecific stain-

ing, and gray and black lines show Glut1 staining

following transfection of luc and Glut1 siRNAs,

respectively. Glut1 and stomatin were also moni-

tored by immunoblotting. Transport was mea-

sured over 30 s as above, and uptake in luc

siRNA-transfected cells was defined as 100%.

Error bars represent SD.

(C) Surface Glut1 levels on control and OHSt patient RBC were compared. Total Glut1 and stomatin levels were assessed in erythrocytes from two OHSt patients

(OHSt1 and OHSt2), a patient with sickle cell anemia (HbSS), two adult controls (CTRL1, CTRL2), and an UC sample by immunoblotting. [3H]2-DG and [14C]DHA

transport in control and OHSt1 RBC were assessed concurrently during a 10 min uptake; uptake in control RBC was defined as 100%, after normalizing all values

for AA diffusion. Data from triplicate samples ± SD are shown.
progenitors (Figure 5B). Thus, in disparity with human erythro-

cytes, Glut1 is lost on murine RBC during postnatal development

and this decrease is regulated at the transcriptional level.

The data presented above raised the question as to the iden-

tity of the transporter responsible for glucose transport in adult

murine RBC. We determined that glucose uptake in adult murine

RBC is mediated via a Glut-type transporter as it was effectively

abrogated by the specific inhibitor CytB but not by the related

CytD molecule (Figure 5C). DHA uptake, on the other hand,

was present only at the limits of detection in murine RBC and

was not affected by CytB (Figure 5C). Glucose, but not DHA,

transport is therefore mediated by a Glut-facilitated process in

murine RBC.

To determine which Glut molecule is expressed in murine eryth-

rocytes, Ter119+ splenic precursors were purified and primers

were designed to amplify distinct Glut molecules. Neither Glut2,

3, nor 5 mRNAs were detected by qRT-PCR, performed using

validated primer pairs (data not shown). In contrast, Glut4

mRNA was readily detected and increased during the postnatal

period (Figure 6A).

We therefore compared Glut1 and Glut4 protein expression

in peripheral RBC isolated from mice of different ages. Impor-

tantly, as described above, Glut1 expression in peripheral RBC

decreased significantly following birth and was undetectable

by 25 days of age (Figure 6B). In marked contrast, Glut4 was

detected in RBC at all ages, albeit at significantly lower levels

in adult as compared to neonatal mice (Figure 6B). Given the

high levels of Glut4 mRNA in splenic Ter119+ precursors, it

was somewhat surprising to detect lower protein levels in periph-

eral RBC. However, this correlated with an RBC glucose uptake

that decreased with age (Figure 6C). Notably though, uptake re-
mained CytB-sensitive (Figure 5C), in agreement with a transport

mediated by Glut4. Significantly, Glut4 protein was not detected

in human RBC, whether neonatal or adult (data not shown).

Altogether these data demonstrate the presence of a second

glucose transporter in murine RBC.

Glut1 Expression and Associated DHA Uptake
Is Specific to Erythrocytes of Species Unable
to Synthesize AA
The marked disparity in Glut1 expression and DHA uptake be-

tween murine and human erythrocytes raised the following ques-

tion: What is the nature of the selective pressure maintaining

Glut1 expression and DHA uptake in humans? We hypothesized

that DHA uptake by human erythrocytes could be linked to

the inability of humans to synthesize the reduced form of DHA,

AA, from glucose. Of the >4000 species of mammals, it appears

that only man, other higher primates, guinea pigs and fruit bats

are unable to synthesize AA from glucose.

Importantly, we detected Glut1 expression on human, guinea

pig and fruit bat erythrocytes but not on any other mammalian

RBC tested including rabbit, rat, cat, dog and chinchilla (Fig-

ure 7A). Notably, the eGFP-tagged HTLVRBD fusion protein binds

Glut1 from all mammalian species tested and is specifically in-

creased/decreased by Glut1 overexpression and siRNA transfec-

tion, respectively (Figure S7; Kinet et al., 2007; Manel et al.,

2003a). Furthermore, Glut1 expression was specifically associ-

ated with DHA uptake; glucose transport was equivalently

efficient in murine and guinea pig RBC whereas DHA was only ef-

ficiently transported by the latter (Figure 7B). As the chinchilla is

phylogenetically closer to the guinea pig (Hystricognathi suborder

of the Rodentia order) than the guinea pig is to man, the common
Cell 132, 1039–1048, March 21, 2008 ª2008 Elsevier Inc. 1043



profile of the latter two species is compatible with a selection for

erythrocyte Glut1 in mammals with defective AA synthesis.

The relationship between erythrocyte Glut1 expression and

loss of AA synthesis potential was further studied in primates. Pri-

mates belonging to the Haplorrhini suborder (including prosimian

tarsiers, new world monkeys, old world monkeys, humans and

apes) have lost the ability to synthesize AA whereas primates in

the Strepsirrhini suborder (including lemurs) are reportedly able

to produce this vitamin (Nakajima et al., 1969; Pollock and Mullin,

1987). Notably, Glut1 was detected on all tested erythrocytes of

primates within the Haplorrhini suborder, including long-tailed

macaques (Macaca fascicularis), rhesus monkeys (Macaca mu-

lata), baboons (Papio anubis) and magot monkeys (Macaca sylva-

nus) (Figure 7C). In marked contrast, Glut1 was not detected on

lemur (Varecia variegata rubra) RBC (Figure 7C). Moreover, al-

though DHA uptake in human and magot RBC was similar, the

level of transport in RBCs from 3 different lemur species was

less than 10% of that detected in higher primates (Figure 7C).

The ensemble of these data reveals erythrocyte Glut1 expression

and associated DHA uptake to be specific attributes of vitamin

C-defective primates of the Haplorrhini clade.

DISCUSSION

Here, we show that erythrocyte Glut1 is unique to those few mam-

malian species that are unable to synthesize AA from glucose.

These species include humans and other higher primates as

Figure 5. Glut1 Expression and Associated DHA Uptake Is Not a

Feature of Adult Murine Erythrocytes

(A) Glut1 protein levels in peripheral RBC obtained from 2, 9, and 25 day-old and

adult mice were assessed by immunoblotting. Surface Glut1 in all samples was

monitored by cytometry, and shaded histograms represent control staining.

(B) Glut1 transcripts were assessed in Ter119+ splenic erythroid progenitors

isolated from mice of different ages, as indicated, by qRT-PCR. cDNAs were

amplified with primers specific for Glut1 and duplicate samples were normal-

ized to GAPDH with error bars representing the SD.

(C) Human and murine RBC were pretreated in the absence or presence of the

Glut inhibitor CytB or the related CytD molecule for 30 min. [3H]2-DG and

[14C]DHA uptake were then assayed for 10 min at RT. Relative uptakes ± SD

are presented, with glucose and DHA uptake in nontreated human erythrocytes

defined as 100%.
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well as guinea pigs and fruit bats. Moreover, in mice, a species

that naturally synthesizes AA, we identified Glut4 as a glucose

transporter in RBC. To our knowledge, this is the first evidence

of a glucose transporter other than Glut1 in erythrocytes, irrespec-

tive of the species. The previous assumption that Glut1 expression

ismaintainedon murineerythrocytes was basedon extrapolations

of human RBC data. Interestingly, previous reports on postnatal

changes in Glut1 expression in rat heart, skeletal muscle and

brown adipose tissue are strikingly similar to that reported here

in murine erythrocytes, with a loss of expression by 20 days of

age (Santalucia et al., 1999). Our identification of Glut4 on

murine erythrocytes is nonetheless surprising because this

glucose transporter is insulin-sensitive (Huang and Czech,

2007). Importantly though, the Glut4-mediated transport rate for

glucose is significantly higher than that for DHA, both in the

absenceandpresenceof insulin (Rumseyetal.,2000).Therefore, it

remains to be determined to whether the absence of a Glut-

dependent DHA uptake in murine erythrocytes is due to the ab-

sence of a transmittable insulin signal in these cells and/or to the

significantly lowerVmax of Glut4 for DHA as compared to glucose.

AA is a vital substance that is produced in the livers of most

mammals (Chatterjee et al., 1961). The absence of AA produc-

tion in humans, due to an inactive L-gulono-g-lactone oxidase

(GLO), the enzyme that catalyzes the terminal step of L-ascorbic

acid biosynthesis (Burns, 1957), has been described by some

scientists as a ‘‘species inborn metabolic error’’ (Stone, 1966).

Indeed, supplementation of human diets with exogenous vitamin

C has significantly reduced the incidence of scurvy. There has

been much debate spurred by several scientists, including Linus

Pauling, as to the appropriate daily recommended vitamin C

allowance. The fact that endogenous synthesis of AA in

Figure 6. Murine Erythrocytes Express the Glut4 Glucose Trans-

porter

(A) Glut4 mRNA levels were assessed in splenic Ter119+ erythroid progenitors

isolated from mice of different ages, as indicated, by qRT-PCR. cDNAs from

purified Ter119+ cells were amplified with primers specific for Glut4 and

normalized to GAPDH. Means ± SD are shown.

(B) Glut1 and Glut4 protein levels in peripheral RBC obtained from mice of

different ages were monitored by immunoblotting.

(C) Glucose uptake was monitored in peripheral RBC obtained from mice of

different ages. [3H]2-DG (2 mCi) uptake was performed for 10 min at RT. Data

are presented as mean CPMs ± SD of triplicate samples.



Figure 7. Erythrocyte DHA Uptake Is Specific to Mammals with Defective AA Synthesis and Requires Persistent Glut1 Expression

(A) Erythrocyte Glut1 expression profiles in mammals defective in AA synthesis and those capable of synthesizing this essential carbohydrate are shown in the top

and bottom panels, respectively.

(B) [3H]2-DG and [14C]DHA uptakes in murine and guinea pig erythrocytes were performed for 10 min at RT. Mean CPM ± SD of triplicate samples are shown.

(C) Surface Glut1 expression was monitored on erythrocytes from primates of the Haplorrhini suborder; long-tailed macaques, rhesus monkeys, baboons, and

magot monkeys, as well as on a lower primate from the Strepsirrhini suborder, a red-ruffed lemur. Relative DHA uptakes in triplicate samples ±

SD are shown with uptake in human erythrocytes defined as 100%.
ascorbate-synthesizing mammals is significantly higher than the

1 mg/kg recommended exogenous supplements for humans has

echoed this question (Pauling, 1970). For example, in goats, the

liver produces AA at a striking rate of 200 mg/kg/day (Chatterjee,

1973; Stone, 1979). Moreover, upon inactivation of GLO in mice

and rats, the amount of exogenous vitamin C that is required to

obviate symptoms and obtain appropriate plasma levels is

greater than 80 mg/kg and 300 mg/kg, respectively (Horio

et al., 1985; Maeda et al., 2000; Mizushima et al., 1984).

The lower AA requirements of humans appear linked to the

persistence of Glut1 expression on their erythrocytes. Indeed,

this trait appears to have coevolved with AA production defi-

ciency. Thus, although guinea pigs and humans independently

lost the ability to synthesize AA 40–50 and 20–25 million years

ago, respectively (Nishikimi et al., 1994, 1992), erythrocytes

from both species exhibit Glut1 expression whereas AA-synthe-
sizing species more closely related to guinea pigs do not.

Moreover, within the primate order, the loss of AA-synthesizing

potential, due to mutations in GLO, has been tracked to the split

of the Strepsirrhini/Haplorrhini primate suborders (Nakajima

et al., 1969; Pollock and Mullin, 1987). We show here that

AA-producing Strepsirrhini primates, encompassing the lemur

families, do not harbor Glut1 on their RBC whereas AA-defective

Haplorrhini species, including man and higher primates, are dis-

tinguished by high Glut1 erythrocyte expression.

May and colleagues have shown that erythrocyte uptake of

DHA and its rapid intracellular conversion to AA is crucial for

ascorbate recycling, providing a critical export source of this

reducing agent (May, 1998). The rapid uptake and reduction of

DHA by erythrocytes is also likely to account for the extremely

low plasma concentration of DHA (<2 mM) (Dhariwal et al.,

1991; Evans et al., 1982; May, 1998). Our experiments, showing
Cell 132, 1039–1048, March 21, 2008 ª2008 Elsevier Inc. 1045



that Glut1 is highly expressed on differentiating erythroblasts,

suggest that DHA can be effectively removed from the bone mar-

row by erythroid cells that have progressed to the basophilic

stage. The high DHA uptake by circulating erythrocytes would

then allow the AA redox molecule to be efficiently transported

throughout the body.

The association of Glut1 with stomatin (Zhang et al., 2001)

favors the movement of Glut1 into lipid rafts (Kumar et al.,

2004; Rubin and Ismail-Beigi, 2003), resulting in a lower glucose

uptake (Rubin and Ismail-Beigi, 2003). Notably, we show here

that this phenomenon is promoted during erythropoiesis due to

a 2-log increase in stomatin mRNA levels. We further document

a role for stomatin in the distinctive transport properties of eryth-

rocyte Glut1 by the observation that the low level of stomatin in

OHSt patient erythrocytes is associated with an altered balance

of glucose/DHA uptake.

The function of stomatin in RBC remains an enigma (Zhu et al.,

1999) and stomatin does not appear to be directly involved in the

increased passive leak of monovalent cations in OHSt. However,

it is now known that stomatin is a monotopic cholesterol-binding,

structural/scaffolding protein like caveolin-1. It forms large oligo-

meric complexes associated with cholesterol-rich membrane

domains that may include various channels and transporters

(Salzer et al., 2007). Stomatin is expressed in a variety of tissues

including brain, liver, kidney, gut and muscle (Stewart et al., 1992)

and other stomatin-like proteins (SLPs) have been detected in

diverse organs (Morrow and Parton, 2005). It is notable that

SLPs and other members of the prohibitin (PHB) superfamily are

conserved from bacteria through humans. Extensive experi-

ments in Caenorhabditis elegans indicate a role for the SLPs,

Unc-1, Unc-24, and Mec-2, in mediating sensitivity to volatile

anesthetics and mechanosensation (Morgan et al., 2007) and ex-

periments in stomatin knock-out mice indicate that stomatin itself

may serve a similar function (Sedensky et al., 2006). Moreover,

mice with mutations in SLP-3 show defective mechanotransduc-

tion (Wetzel et al., 2007). The mechanisms via which SLPs affect

these processes have not been completely elucidated but it has

been recently shown that MEC-2 and podocin both function by

binding cholesterol, an interaction that favors association with

ion-channel complexes (Huber et al., 2006).

The low level of DHA transport observed in murine erythro-

cytes, strongly argues against a role for stomatin in inducing

DHA uptake via Glut4, at least in these cells. Importantly though,

in skeletal muscle, Glut4 associates with another PHB family

protein, flotillin-1. This association occurs via a Cbl-CAP com-

plex (Baumann et al., 2000; Kimura et al., 2001) and following in-

sulin stimulation, flotillin-1/Glut4 complexes are translocated to

the plasma membrane (Fecchi et al., 2006). Notably, flotillin-1

is a major component of erythrocyte lipid rafts (Salzer and Pro-

haska, 2001). It is therefore tempting to speculate that flotillin-1

may regulate membrane Glut4 expression in murine RBC. Olig-

omeric, raft-associated proteins of the PHB superfamily, such

as stomatin, flotillin-1 and Unc-1 and �24, may therefore condi-

tion the differential recruitment of channel and transporter glyco-

proteins to membrane microdomains, allowing diverse cell types

to adjust to variable metabolic requirements.

The competitive binding of DHA and glucose to Glut1

described in nucleated cells (Rumsey et al., 1997; Vera et al.,
1046 Cell 132, 1039–1048, March 21, 2008 ª2008 Elsevier Inc.
1995) was not observed in human erythrocytes. It has been

hypothesized that erythrocyte-specific factors modulate Glut1-

mediated sugar translocation across cell membranes (Cloherty

et al., 1996; Leitch and Carruthers, 2006). The importance of sto-

matin in modulating the relative efficacy of glucose/ DHA trans-

port in human erythrocytes implies a unifying explanation: The

high coexpression of Glut1 with stomatin negatively modulates

glucose uptake while enhancing DHA transport, thereby allowing

DHA uptake under physiological conditions where glucose

is present at a >3-log higher molarity. The persistence of erythro-

cyte Glut1 expression is a unique trait of vitamin C-defective

mammals, resulting in a massive expression of DHA transporters

on the most abundant cell in the circulation.

EXPERIMENTAL PROCEDURES

Cell Culture and Isolations

RBC were obtained from mouse, rat, donkey, guinea pig, macaque, magot

monkey, baboon, lemur, and chinchilla blood in accordance with local animal

facility regulations. RBC were obtained from two patients with OHSt after pa-

rental or personal informed consent, aged 8 and 29 years (patients OHSt1 and

2, respectively). RBC from a patient with sickle cell anemia was used to control

for increased reticulocyte counts. Healthy human RBC were obtained from the

Etablissement Français du Sang. CD34+ cells and neonatal RBC were isolated

from umbilical cord blood (UC) obtained after informed consent. CD34+ cells

were isolated using EasySep (StemCell) or Milteyni selection kits. Murine ery-

throid progenitors were isolated from spleen cells at the indicated time points.

Cells were labeled with a rat a�murine Ter119 mAb and selected with a�rat

IgG magnetic beads (Dynal). 293T, HeLa, and A431 cells were grown in

DMEM with high glucose (4.5 g/l) and 10% fetal bovine serum (FBS) while

Jurkat cells were grown in RPMI with 10% FBS.

In Vitro Erythroid Differentiation

CD34+ cells (5 3 105 cells/ml) were expanded in StemSpan media (StemCell)

supplemented with 5% FBS, 25 ng/ml rhuSCF, 10 ng/ml rhuIL-3 and 10 ng/ml

rhuIL-6 (Peprotech) at 37�C. Erythropoiesis was induced at day 7 by addition of

3 IU/ml recombinant erythropoietin (rhuEPO). Cytokines were supplemented

every 3 days.

Flow Cytometry

CD71 and Glycophorin A expression were monitored by incubating cells on ice

for 20 min with the appropriate fluorochrome-conjugated mAbs (Beckman

Coulter). Background fluorescence was measured using isotype-matched

Abs. Surface Glut1 expression was monitored as previously described (Manel

et al., 2003b; Swainson et al., 2005) by binding to its ligand, the receptor-bind-

ing domain of a recombinant envelope glycoprotein from the human T lympho-

trophic virus (HTLV) (Manel et al., 2003a, 2005) fused to EGFP (HRBDEGFP)

(Kim et al., 2004). Intracellular Glut1 and stomatin levels were determined using

an a�carboxy terminal Glut1 pAb (generously provided by A. Carruthers) and

an a�stomatin mAb (GARP-50). Intracellular staining was performed following

fixation (2% PFA) and permeabilization (0.5% saponin). The secondary Ab was

a FITC-conjugated goat a�rabbit IgG and a PE-conjugated goat a�mouse IgG

(Sigma), respectively. Cells were analyzed on a FACSCalibur flow cytometer

(Becton Dickinson) and data analyses were performed using CellQuest Pro

(Becton Dickinson) or FlowJo (Tree Star) softwares.

Expression Vectors and siRNA Transfections

A431 cells were transfected with the human stomatin cDNA inserted in pEF-

Puro.PL3 as described (Umlauf et al., 2004). Transfection of A431-stomatin

cells with the indicated siRNAs (2 ml each at 100 mM) was performed using lip-

ofectamine 2000 (Invitrogen). The modified sequences of the three synthetic

siRNAs, complementary to the Glut1 30 UTR, and the luciferase siRNA are

included in the Supplemental Data.



Quantitative Analysis of Human and Murine Gluts

and Stomatin mRNAs

Total RNA was isolated from differentiating human and murine erythroid

progenitors at the indicated time points using the GenElute mammalian total

RNA kit (Sigma-Aldrich). Quantitative PCR of cDNAs was performed using

the Quantitect SYBR green PCR Master mix (QIAGEN) with 2 ml of cDNA

and 500 nM primers in 20 ml. Primers for human and murine Gluts, human

stomatin and human/murine GAPDH are noted in the Supplemental Data. All

primers were designed within a single exon allowing the efficacy of all primer

pairs to be verified on genomic DNA samples and standard curves for each

amplification product were established on genomic DNA. Amplification of all

Gluts, stomatin and GAPDH cDNAs were performed using the LightCycler

2000 (Roche). Cycling conditions comprised a denaturation step for 15 min

at 95�C, followed by 40 cycles of denaturation (95�C for 15 s), annealing

(59�C for 20 s) and extension (72�C for 15 s). After amplification, melting curve

analysis was performed with denaturation at 95�C for 5 s and continuous fluo-

rescence measurement from 70�C to 95�C at 0.1�C/s. Each sample was

amplified in duplicate.

Glucose, AA, and DHA Uptakes

Cells (1–25 3 106) were incubated in serum/glucose-free RPMI for 30 min.

Under conditions where cells were treated with inhibitors, cells were incubated

in the presence or absence of CytB or CytD (100 mM) for 30 min in 500 ml of se-

rum/glucose-free RPMI prior to uptake analyses. Cells were then washed and

resuspended in 50 ml of the same media. For glucose competition assays,

5 mM cold glucose was added to the media. Glucose uptake was initiated

by addition of labeled 2-deoxy-D[1-3H]glucose (Amersham) to a final concen-

tration of 0.5 mM (2 mCi) (1 Ci = 37 GBq). Transport assays were performed

for 1, 15, 30, 60, 300, 600, and 1200 s at RT, as indicated. AA and DHA uptake

analyses were initiated by addition of [14C]-AA to a final concentration of

500 mM (0.2 mCi; specific activity: 8.5 mCi/mmol) (PerkinElmer). For DHA

uptake assays, ascorbate oxidase (2 U/ml) (Calbiochem) was added to the me-

dia. Transport was terminated by addition of 20-volumes of ice-cold medium.

Cells were then solubilized in 500 ml of 0.1% SDS. 3H and 14C incorporation

were counted by liquid scintillation.

Immunoblots

Nonboiled cell lysates were electrophoresed on SDS-10% acrylamide gels,

transferred and probed with a C-terminal Glut1 pAb (1:10,000), a C-terminal

Glut4 pAb (ab654, Abcam), a stomatin mAb (GARP50) or an actin Ab followed

by a peroxidase-conjugated a-rabbit or a–mouse Ig, as indicated.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures and

seven figures and can be found with this article online at http://www.cell.

com/cgi/content/full/132/6/1039/DC1/.
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