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T cells are stimulated by the engagement of antigen, cytokine, pathogen, and

hormone receptors. While research performed over many years has focused

on deciphering the molecular components of these pathways, recent data

underscore the importance of the metabolic environment in conditioning

responses to receptor engagement. The ability of T cells to undergo a massive

proliferation and cytokine secretion in response to receptor signals requires

alterations to their bioenergetic homeostasis, allowing them to meet new ener-

getic and biosynthetic demands. The metabolic reprogramming of activated T

cells is regulated not only by changes in intracellular nutrient uptake and uti-

lization but also by nutrient and oxygen concentrations in the extracellular

environment. Notably, the extracellular environment can be profoundly

altered by pathological conditions such as infections and tumors, thereby per-

turbing the metabolism and function of antigen-specific T lymphocytes. This

review highlights the interplay between diverse metabolic networks and the

transcriptional/epigenetic states that condition T-cell differentiation, compar-

ing the metabolic features of T lymphocytes with other immune cells. We fur-

ther address recent discoveries in the metabolic pathways that govern T-cell

function in physiological and pathological conditions.
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The potential of immune cells to respond to infections,

foreign antigens, and even auto-antigens requires the

induction of metabolic pathways that support their

proliferation and activation. Immune cell responsive-

ness depends on the generation of energy in the form

of ATP but recent work has also highlighted the

importance of metabolite pathways in bioenergetic-

independent processes including: (a) nucleic acid,

amino acid, and phospholipid synthesis; (b) de novo

lipogenesis; and (c) production of reducing equivalents

to maintain the redox state of the cell. Moreover, we

have learned that a wide range of diverse fuels as well

as their utilization in different pathways govern

immune cell function as well as plasticity; for example,

metabolic alterations regulate the ‘choice’ between

effector and regulatory T (Treg) cell fates as well as

between IFNc-secreting M1 and IL4-secreting M2

macrophages (reviewed in ref. [1–4]). The metabolism

of a cell conditions its response to receptor and cyto-

kine signals, controlling transcription factor networks
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and the epigenetic landscape. In this review, we focus

on recent discoveries revealing the regulation of T lym-

phocytes in the context of different metabolite

resources and activation of metabolic pathways, specif-

ically addressing the metabolic regulation of transcrip-

tional pathways and epigenetic modifications (Fig. 1).

The composition of the extracellular environment also

fluctuates in pathological conditions as a consequence

of metabolite, electrolyte, proton, and oxygen concen-

trations, among others. Here, we highlight the impor-

tance of pathological extracellular environments,

generated as a response to tumor growth or infection,

in the regulation of T-cell plasticity and function.

Interplay between nutrients and
downstream effectors in T-cell
differentiation and function

The metabolic needs of activated immune cells are gen-

erally secured by augmented nutrient entry and

changes in the utilization of those nutrients. Cell

surface upregulation of metabolite transporters is a

rate-limiting step in nutrient entry and indeed, the

upregulation of glucose, glutamine, and neutral amino

acid transporters are a sine qua non for optimal T-cell

proliferation and effector function [5–13]. The pheno-

typic alterations that occur in activated T lymphocytes

are conditioned by the range of accessible metabolites

and the means in which they are metabolized.

Upon TCR stimulation, naive T cells undergo a

metabolic reprogramming favoring aerobic glycolysis,

wherein glucose is converted to lactate, as compared

to glucose catabolism via the mitochondrial tricar-

boxylic acid (TCA) cycle and oxidative phosphoryla-

tion (OXPHOS). Glycolysis is less efficient than

OXPHOS in energy production (2 net ATPs as com-

pared to 32–34 ATPs), but it is more efficient in pro-

ducing the carbons and electrons (NADH/NADPH)

that are required for production of macromolecular

precursors; these include acetyl co-A for fatty acids,

glycolytic intermediates for amino acids and ribose for

nucleotides, promoting a rapid growth and prolifera-

tion of immune cells [2,4]. Furthermore, under condi-

tions of high glucose flux, the shunting of glucose

through the pentose phosphate pathway, leading to

the synthesis of five-carbon sugars used for nucleotide

Fig. 1. Metabolic orchestration of immune cell function. A schematic representation of the multiple pathways that are orchestrated by

metabolism. The effects of the metabolic environment are conducted in the cell via different sensors. These inputs are then transcribed into

changes in the transcriptional, epigenetic, redox, and energy status of a cell. The major players in these processes are indicated here: (a)

Molecules such as mTOR integrate nutrient-sensing pathways while AMPK and GCN2 respond to the energy homeostasis of the cell and

integrate stress responses; (b) Transcription factors such as HIF and Myc not only confer metabolic advantages to cancer cells but also

regulate T cell effector function; (c) Epigenetic-metabolomic crosstalk governs T-cell fate via changes in methylation, acetylation, and

succinylation among others; production of NAPDH through the pentose phosphate pathway favors macromolecular biosynthesis, the ratio of

oxidized (GSSG) to reduced glutathione (GSH) serves as a marker of the redox homeostasis of the cell and NAD+ regeneration through

mitochondrial respiration contributes to multiple levels of regulation in T lymphocytes including the control of T-cell inflammation [4,15].

Energy transfer within the cell is mediated by nucleotides with the most important being ATP and GTP.
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biosynthesis, results in an increased generation of the

key intracellular reductant NADPH [14] (Fig. 1).

While T cell activation results in a massive upregula-

tion of glycolysis, OXPHOS is also critical for T cell

function. Indeed, NAD+ regeneration through mito-

chondrial respiration improves T-cell lysosomal func-

tion and reduces inflammation [15]. The level of

OXPHOS in T lymphocytes is modulated by the pres-

ence of amino acids. For example, arginine uptake

results in a shift in metabolism from a glycolytic to

OXPHOS program and this change has functional

consequences, increasing the generation of central

memory cells [10]. Furthermore, as outlined below,

specific lymphocyte subsets exhibit differences in the

utilization of nutrients as energy sources [16]. Glucose

and glutamine are also utilized in the hexosamine path-

way, producing uridine diphosphate N-acetylglucosa-

mine (GlcNAc), a substrate for glycosyltransferases that

catalyze post-translational O-GlcNAcylation. Notably,

this glycosylation of serine/threonine residues by

O-GlcNAC is required for T-cell activation [17–19]
while a high-fat diet increases O-GlcNaC, priming

CD4+ effector cells and potentially increasing suscepti-

bility to autoimmune diseases [20].

The importance of mitochondrial function in T-cell

stimulation is underlined by the finding that within

15 min after TCR stimulation, mitochondrial ROS are

generated, creating a positive feedback loop for TCR

signaling [21,22]. Indeed, fueling mitochondrial ROS

production is a prerequisite for antigen-specific T-cell

expansion [23] and mitochondria contribute to T-cell

activation [23–25] as well as to the maintenance of

memory and Treg cell subsets [25–29]. Moreover, dis-

tinct T-cell subsets exhibit different requirements for

mitochondrial activity; CD8+ T cells are significantly

more sensitive than CD4+ lymphocytes to complex IV

dysfunction (regulated by cytochrome c oxidase) with

increased mitochondrial mass in CD8 memory cells

resulting in a bioenergetic advantage for rapid recall

while Tregs are more resistant than T effector (Teff)

subsets to mitochondrial failure [30]. Mitochondrial

function is linked to its morphology [3,31] and mito-

chondrial fusion–fission dynamics have been revealed

to regulate immune function; mitofusin-mediated

fusion is required for lymphocyte differentiation of

hematopoietic stem cells [32] while memory/effector

CD8 T cell generation is balanced by fusion–fission,
respectively [33].

The data presented above reinforce the postulate

that immune cell populations exhibit distinct bioener-

getic requirements. Indeed, T lymphocyte subsets exhi-

bit disparate metabolic profiles; Teff cells are highly

glycolytic, and sometimes lipogenic [34,35], while

suppressive Treg cells display a mixed metabolism with

augmented lipid oxidation [13,35–37]. Conversely,

effector T-cell secretion of IFNc is directly dependent

on the glycolytic enzyme glyceraldehyde 3-phosphate

dehydrogenase (GAPDH) [38,39]. Th17 cells also

strongly depend on glycolysis, as demonstrated by the

massive induction of glycolytic enzymes and upregula-

tion of glycolytic activity [40]. Although the mecha-

nisms that contribute to regulating glycolysis are

complex, the mammalian target of rapamycin (mTOR)

signaling pathways plays a critical role. mTOR is a

serine/threonine protein kinase that integrates environ-

mental cues from nutrients, growth factors, and stress

signals into an ‘optimal’ cellular response that is medi-

ated via two complexes, mTORC1 and mTORC2

[13,41–43]. Indeed, mTOR signaling complexes show

specificity in immune cell regulation; in the absence of

mTORC1 but not mTORC2, Th17 cell differentiation

is abrogated [44]. Furthermore, mTORC1 is required

for Th1 and Th17 differentiation as well as CD8 cyto-

lytic activity while mTORC2 promotes Th2 differentia-

tion [44–48].
Mammalian target of rapamycin activity is directly

regulated by the AMP-activated protein kinase

(AMPK) complex, a sensor of nutrient stress, in coop-

eration with the stress-activated kinase general control

nonrepressed 2 (GCN2) (reviewed in ref. [49,50].

AMPK is transiently upregulated on mature T cells by

antigen receptor engagement [51] and regulates glycol-

ysis and cytokine secretion [52]. Under conditions of

glucose deprivation, AMPK directly inhibits mTOR

signaling, resulting in changes in nutrient utilization

(toward glutamine) and long-term memory CD8 T-cell

generation and survival [53,54]. Moreover, AMPK

activity in memory CD8 T cells (at the expense of

mTOR activation) promotes the mitochondrial uptake

of fatty acids and their oxidation [28,29]. Thus,

AMPK activity results in a decreased dependence on

glucose metabolism, contrasting with the glycolytic

metabolism of effector cells.

Mammalian target of rapamycin signaling is medi-

ated by numerous transcription factors but among the

myriad of factors, c-Myc and hypoxia-inducible factor

1a (HIF1a) are probably the most critical [55–57]
(Fig. 1). c-Myc directly regulates glutamine utilization

within the cell by upregulating the expression of the

rate-limiting glutaminase I enzyme that catalyzes the

conversion of glutamine to glutamate [13,58,59].

HIF1a regulates Th1/Th17 effector differentiation and

B-cell antibody production via the induction of the

Glut1 glucose transporter as well as glycolytic enzymes

[35,37,40,44,60]. It can also bind directly to the IFNG

promoter, enhancing its expression [61]. Intriguingly,
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HIF1a has been reported to both positively [62,63]

and negatively [37,61,64] impact Foxp3 expression in

Tregs. In support of a negative role for Foxp3 in regu-

lating an mTOR-HIF1a-cMyc axis, it is notable that

Foxp3 can suppress Myc expression and downstream

glycolysis in Tregs, allowing them to function in low-

glucose environments [65]. Furthermore, we and others

have shown that Treg, but not Teff, generation is

maintained under conditions where glucose, glutamine,

and leucine transport are limiting [9,12,66–68].
Decreased nutrient entry inhibits mTOR activity and

indeed, genetic abrogation of mTOR signaling pro-

motes the generation and function of Tregs while

blocking the generation of Teff [69–71]. Conversely,

activation of mTOR blocks Treg differentiation and

function [72–74] (Fig. 2). The importance of sup-

pressed mTOR function in inhibiting inflammation is

also revealed in the macrophage system; inhibition of

mTOR enhances the polarization of anti-inflammatory

M2 polarization and decreases IFNc secretion by LPS-

stimulated M1 macrophages [75–77]. Thus, under

physiological conditions, immune cell function is

critically regulated by mTOR signaling pathways with

limiting nutrient resources levels fostering an

anti-inflammatory environment mediated by increased

Treg and M2 macrophage function.

Regulation of T-cell function by
metabolite-mediated epigenetic
changes

Epigenetic modifications, including DNA methylation

and acetylation as well as histone marks, have been

shown to play an important role in immune cell differ-

entiation and function. Deletion of the JMJD2 and

UTX histone H3 lysine 27 trimethylation (H3K27Me3)

dimethylases inhibit terminal thymocyte development

[78], while JMJD3 deletion attenuates Th1 and Treg

differentiation, promoting polarization to a Th2 or

Th17 fate and decreasing the expression of inflamma-

tory genes in LPS-stimulated macrophages [79–81].
The JMJD2 enzyme has also been linked with IL17

production [82]. Furthermore, TET family deoxygenases

play multiple roles in T-cell effector function—increas-

ing IL17/IFNc, stabilizing the Foxp3 transcription

factor in Treg cells, and promoting expansion of iNKT

cells [83–87]. While these types of postnatal epigenetic

modifications in immune cells were once thought to be

completely independent of the cell’s metabolic status,

it is now clear that these two processes are intricately

related. Within the innate immune system, trained

immunity, the long-term memory that is associated

with an epigenetic reprogramming at the level of

histone H3 methylation, has recently been shown to be

regulated by mTOR/HIF1a-stimulated glycolysis [88].

Furthermore, expression of the JHDM1D histone

demethylase increases markedly upon long-term nutri-

ent starvation [89] and both JMJD and TET demethy-

lases require the alpha-ketoglutarate (aKG) metabolite

as a cofactor [90,91]. Thus, alterations in citric acid

cycle enzymes that result in either the accumulation of

succinate or fumarate or reduction of aKG to R-2-

hydroxyglutarate (R-2HG)—inhibiting aKG-depen-

dent demethylases—will alter the cell’s epigenetic state

[92–96]. Succinate can also independently alter the epi-

genetic state of a cell via succinylation [97], exacerbat-

ing the effects of R-2HG [94].

In M1 monocytes, metabolic constraints that

increase succinate levels result in an inhibition of the

activity of aKG-dependent prolyl hydroxylases that

target HIF1a for proteosomal degradation [98,99].

Thus, the presence of succinate leads to a stabilization

of HIF and this has significant functional conse-

quences for the M1 macrophage, enhancing IL1b pro-

duction [100,101]. Conversely, aKG promotes M2

macrophage differentiation [102] as well as Th1 differ-

entiation in glutamine-deprived conditions [66]. Fur-

thermore, the aKG/succinate ratio modulates stem cell

differentiation potential [103,104]. Another enantiomer

of 2-HG, S-2-hydroxyglutarate, accumulates in T lym-

phocytes following physiological TCR engagement and

its effects on demethylation and stabilization of HIF1a
have been shown to enhance CD8 T-cell proliferation

and antitumor function [105]. Thus, further research

will undoubtedly uncover additional epigenetic net-

works via which the balance between succinate, fuma-

rate, aKG, and 2-HG regulate immune cell function.

The changes in the cell that occur as a result of these

metabolites extend far beyond alterations in ATP pro-

duction, altering the cell’s epigenetic landscape.

Histone acetylation is a critical epigenetic modifica-

tion that regulates immune cell function. Acetylation is

regulated by multiple metabolites including acetyl-coA

and acetate, produced via glycolysis and the fermenta-

tion of carbohydrates in the intestine by gut micro-

biota (reviewed in ref. [106]). Notably, decreased

glycolysis has recently been shown to lead to lower

levels of acetyl-coA and subsequent histone acetyla-

tion, resulting in a loss of stem cell pluripotency [107]

as well as decreased IFNc transcription in CD4 T cells

[108]. Conversely, hyperacetylation in CD8 T cells is

associated with an active state of the IFNG promoter

[109]. There is also a complex interplay between gly-

colysis, IFNc and expression of HIF1a; the glycolytic

enzyme GAPDH not only inhibits IFNc production

by binding to the 30 UTR [38] but similarly negatively
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regulates HIF1a expression [110]. Thus, it will be

important for future studies to determine the relative

contributions of glycolysis-linked acetylation of the

IFNG promoter and GAPDH-mediated binding to

HIF1a and IFNc RNAs in the regulation of IFNc
expression.

The level of histone acetylation is also regulated by

histone deacetylases (HDACs) with the family of sirtuin

HDACs (Sirt) playing a critical role. Sirts are them-

selves directly regulated by the metabolic status of the

cell; their activity is directly dependent on intracellular

NAD+ levels [111]. Studies on the effects of Sirt1 in T

lymphocytes have already revealed an impressive com-

plexity; the absence of Sirt1 attenuates T-cell signaling

and effector function [112–116] while deacetylation of

RORct and Foxp3 promote Th17 differentiation [53] at

the expense of Treg generation [117–119], respectively.
However, pharmacological Sirt1 activation inhibits

Th17 differentiation [120] but increases IFNc secretion

[121]. Irrespective of the precise effects of Sirt1 in T lym-

phocytes, the ensemble of these studies point to the

importance of metabolite-regulated deacetylation in

Teff differentiation and function.

Metabolic alterations in pathological
conditions: effects on lymphocyte
responsiveness

When individuals are affronted by a tumor or infec-

tion, the initiation of an immune response is generally

extremely advantageous. However, the ability of

immune cells to optimally respond to these insults is

often negatively modulated by their metabolite

environment, an environment that is conditioned by

nutrient composition, ‘waste’ products, oxygen concen-

tration, pH, and physical forces, among others. The

Kynurenine
Lactate

Fig. 2. Metabolic pathways condition the differentiation of regulatory and effector T cells. Multiple metabolic pathways regulate the

differentiation of na€ıve T cells to regulatory (Treg) and effector (Teff) fates. While we still have much to learn regarding the relative

importance of different metabolites, polarization is biased to a Treg fate in the presence of high levels of adenosine, Kyn, and lactate while

glucose and amino acids (AA) favor a Teff fate [9,10,12,13,65,66,136,155,156]. In Tregs, there is an important contribution of fatty acid

oxidation and OXPHOS while Teffs exhibit an enhanced utilization of glucose via glycolysis, with acetyl-CoA promoting histone acetylation.

Teffs also utilize both glucose and glutamine for the formation of aKG, an intermediate in the mitochondrial TCA cycle and required for aKG-

dependent enzymatic reactions. The pathways indicated here are only a simplistic schematic but they highlight the significant complexity of

metabolite utilization in T-cell differentiation and function.
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dysregulated growth of cancer cells can directly influ-

ence the extracellular environment and multiple studies

now strongly suggest that the metabolic phenotype of

the tumor governs the ensuing immune response (re-

viewed in ref. [122,123]). In the context of several solid

tumors including hepatocellular carcinomas and stom-

ach/colon tumors, quantitative metabolome profiling

has revealed decreased intratumoral concentrations of

glucose and glutamine [124,125]. Nutrient deprivation

is associated with mitochondrial fusion and inhibition

of autophagy [126], processes that will alter the func-

tion of intratumoral T lymphocytes [33]. Moreover,

tumor-infiltrating T cells demonstrate a loss of mito-

chondrial function due to decreased expression of

PPAR-gamma coactivator 1a (PGC1a), a key factor in

mitochondrial biogenesis [127]. Similarly, following

CMV infection, decreased PGC1a in CD8 T cells

results in mitochondrial dysfunction and exhaustion

[128]. Notably, the competitiveness of T cells within

the tumor environment may be enhanced by low mito-

chondrial function; adoptively transferred T cells with

low mitochondrial membrane potential allow the iden-

tification of cells with optimal in vivo persistence and

antitumor activity [129].

Competition of T cells and tumor cells for limiting

amounts of glucose can lead to a decreased glycolysis

in the former, resulting in a subsequent inhibition of

T-cell cytolytic and effector function [38,67,130]. A

metabolic checkpoint in glycolysis, phosphoenolpyru-

vate, has been identified as a key factor in the regula-

tion of calcium flux and NFAT (nuclear factor of

activated T cells) activity in T lymphocytes [131]. Fur-

thermore, aerobic glycolysis promotes Th17 generation

by starving the hexosamine pathway; when glycolysis

is attenuated, reduced levels of GlcNAc promote a

switch from a Th17 to an iTreg fate [65]. Bacteria and

viruses such as Staphylococcus aureus and Hepatitis C,

respectively, also generate glucose-limiting conditions,

promoting adaptation via a metabolic reprogramming

[132,133]. Indeed, in the context of influenza infection,

nutrient supplementation, and specifically glucose uti-

lization, is necessary to protect against mortality [134].

Nevertheless, the competition for nutrients in the

‘fight’ against cancer and infections is clearly complex;

nutrient restriction has been found to sensitize cancer

cells to cytotoxic therapies and protect mice from the

deleterious effects of bacterial sepsis [134,135]. Thus,

future research will be necessary to optimally define

the role of diet and nutrients in regulating the body’s

responses to specific types of cancers, infections, and

autoimmune conditions.

Competition for amino acids is also critical for T-

cell function; decreases in glutamine, arginine, and

leucine, among others, severely impact on the potential

of na€ıve T cells to differentiate into Teff cells [5–
13,66,136]. In the absence of glucose and glutamine, T

lymphocytes are biased toward a Treg cell fate

[66,136]. Unlike Teff cells, Foxp3+ Treg cells are cap-

able of surviving in a low-glucose environment [35,65].

Amino acid uptake by macrophages or their produc-

tion of arginase can also serve to decrease amino acid

availability for T lymphocytes [137,138].

‘Waste’ products within a tumor site or infection

will also modulate immune responsiveness. The major

metabolite, initially thought to function solely as a

‘waste’ product, is lactate. Lactate produced by aero-

bic glycolysis in tumor cells can be transported into T

cells via monocarboxylate transporters [139]. Glycoly-

sis and lactate production are regulated by pH as both

phosphofructokinase and lactate dehydrogenase activi-

ties increase at alkaline pH, due at least in part to

post-translational deprotonation (reviewed in ref.

[140]). Lactate has been found to decrease cytolytic

CD8 T-cell function and T-cell motility [141–143]. Fur-
thermore, lactate decreases NK cell cytotoxic function

[144,145] as well as the antigen presentation potential

and differentiation of dendritic cells [146]. Lactate also

functions to actively promote anti-inflammatory

responses; unlike Teff cells, Tregs are relatively resis-

tant to lactate. The Foxp3 transcription factor was

found to mediate this resistance by inhibiting Myc

activity and glycolysis [65] (Fig. 2). Furthermore, lac-

tate promotes the polarization and growth of immuno-

suppressive cells including M2 macrophages and

myeloid-derived suppressor cells [137,144,145]. In light

of these data, it is interesting to note that high lactate

dehydrogenase levels correlate with a poor prognosis

in several different types of tumors [147–150].
The degradation of tryptophan (Trp) results in the

generation of a key metabolite in T-cell function,

kynurenine (Kyn). This process is catalyzed by indo-

leamine 2,3-dioxygenase 1 (IDO), an enzyme that is

upregulated in many cancers and correlates with a

poor prognosis [151–154]. High IDO levels result in

the depletion of Trp in the tumor microenvironment

and furthermore, Kyn promotes Treg polarization by

activation of its downstream effector, the metabolic

stress-sensing protein kinase GCN2 [155,156]. In this

regard, it is notable that Kyn is a ligand for the aryl

hydrocarbon receptor that promotes Treg generation

(for a review see [157]). Trp depletion also attenuates

Th1 proliferation but does not affect Th2 or Th17 sub-

sets, highlighting metabolic differences between these

subsets [158] (Fig. 2). Finally, from a clinical perspec-

tive, IDO inhibitors show promising results in preclini-

cal tumor models [155,159,160] and most significantly,
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the combined utilization of the IDO inhibitor indoxi-

mod with a PD-1 checkpoint inhibitor (pem-

brolizumab) has just been reported to result in a

remarkable 52% overall response rate in patients with

advanced melanoma [161].

The immune response is also regulated by electrolytes

such as sodium chloride, increasing T follicular helper

and Th17 responses while decreasing Treg suppression

and inflammation [162–164]. In contrast, extracellular

potassium, increased by tumor necrosis, attenuates

mTOR signaling and Teff function [165]. On another

level, the antimicrobial metabolite itaconate, synthe-

sized by the product of the immunoresponsive gene 1

(Irg1), cis-aconitate decarboxylase, regulates cytokine

secretion by proinflammatory macrophages. Briefly,

TCA cycle-generated citrate is used for the synthesis of

itaconate which then acts as an inhibitor of succinate

dehydrogenase, resulting in succinate accumulation and

enhanced M1 immune reactivity [166–168]. Extracellu-
lar ATP also regulates the immune response upon its

metabolism to adenosine via the CD39/CD73 ectoen-

zymes. Activation of the CD39/adenosine axis corre-

lates with a higher Treg suppressor activity and lower

CD4+ counts in HIV-1+ patients [169,170] (Fig. 2).

Finally, it is important to note that the extracellular

environment is not solely defined by its composition in

metabolites, electrolytes, protons or oxygen but also

by physical parameters such as hydrostatic pressure,

shear stress, and tension forces [171]. Tumors generally

exhibit an increased stiffness [172] and a recent study

has elegantly shown the critical nature of stiffness in

the cell cycle progression, metabolism, and cytokine

secretion profile of TCR-stimulated T cells [173]. Thus,

the ensemble of these data point to the importance of

the global extracellular environment in regulating the

metabolic status of immune cells in both physiological

and pathological conditions.

Conclusion

The integration of data emerging from research on

metabolite-regulated transcriptional, epigenetic, and

energy networks will bring novel insights to our under-

standing of T lineage differentiation and function. This

is particularly crucial for furthering our understanding

of pathological situations where stresses such as infec-

tions and tumors can alter the metabolite levels that

are available for infiltrating immune cells. While much

recent research has focused on the importance of

nutrients—including amino acids—in effector function,

future studies will allow us to ascertain the role(s) of

electrolytes, minerals, and pH in immune regulation.

Evaluation of the metabolic crosstalk between immune

cells and their complex microenvironment remains a

challenge and the development of novel tools that

allow in vivo real time metabolic imaging and carbon

flux analyses will promote innovative biological inter-

ventions and clinical evaluations. The identification

and exploitation of the metabolic pathways regulating

the function of T lymphocytes as well as other immune

subsets will be critical for the development of new

therapeutic strategies targeting tumors, infections, and

autoimmune diseases.
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