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Simple Summary: Cancer metastasis is often associated with a dismal prognosis for the patient. It is,
therefore, crucial to understand the mechanisms behind the cascade of events that lead to metastatic
disease. Cancer-associated fibroblasts (CAFs) play a key role in cancer progression. Therefore, it is of
importance to understand the roles of CAFs in invasion, metastasis, and therapy resistance. Here,
we reviewed the crosstalk between CAFs and tumor cells to summarize the current knowledge on
CAF roles in cancers to provide the necessary structure to advance the field.

Abstract: Cancer-associated fibroblasts (CAFs) play a key role in cancer progression by contribut-
ing to extracellular matrix (ECM) deposition and remodeling, extensive crosstalk with cancer cells,
epithelial-to-mesenchymal transition (EMT), invasion, metastasis, and therapy resistance. As metas-
tasis is a main reason for cancer-related deaths, it is crucial to understand the role of CAFs in this
process. Colorectal cancer (CRC) is a heterogeneous disease and lethality is especially common in
a subtype of CRC with high stromal infiltration. A key component of stroma is cancer-associated
fibroblasts (CAFs). To provide new perspectives for research on CAFs and CAF-targeted therapeutics,
especially in CRC, we discuss the mechanisms, crosstalk, and functions involved in CAF-mediated
cancer invasion, metastasis, and protection. This summary can serve as a framework for future
studies elucidating these roles of CAFs.

Keywords: cancer-associated fibroblast; invasion; metastasis; colorectal cancer; extracellular matrix;
epithelial-to-mesenchymal transition; CAF-targeted therapy

1. Introduction

The word “stroma” was derived from Greek and originally meant “covering” or
“mattress”, but, in 1835, it entered the field of biology as “a part of a tissue or organ with a
structural or connective role”. The stroma consists of many different cell types, but, in this
review, we will focus on fibroblasts and their role in cancer invasion and metastasis.

Many articles describe a parallel dialogue between cancer-associated fibroblasts (CAFs)
and tumor cells. This crosstalk enables cancer cells to attract fibroblasts and transform
them into CAFs, and, in turn, these can modulate and protect cancer cells.

CAFs have been receiving a growing appreciation in the past few years. The impact
of CAFs on cancer invasion and metastasis occurs through remodeling of the extracellular
matrix (ECM), modulation of epithelial-to-mesenchymal transition (EMT) in cancer cells,
secretion of growth factors supporting cancer cells, and influencing therapy responses. It is
believed that this is mainly achieved by signaling between CAFs, cancer cells, and ECM
exerted either by direct contact, secretion of cytokines, or extracellular vesicles (EVs).
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When cancers metastasize, this often is associated with a dismal prognosis for the
patient. It is, therefore, crucial to understand the mechanisms behind the cascade of
events that lead to metastatic disease. In this cascade, the extracellular matrix (ECM)
plays an important role, as it provides structural and biochemical support to cells, but also
restrains dispersion of cells. CAFs are known to modify the ECM during tumor progression,
making it more permissive for tumor invasion into the surrounding tissue. Key secreted
components for ECM remodeling are transforming growth factor beta (TGF-β), hepatocyte
growth factor (HGF), and specific interleukins and metalloproteases. These factors aid
tumor cells in invasion and metastasis and are interesting targets for therapy, which we
will refer to as CAF-targeted therapy.

In this review, we summarize the literature highlighting the recent findings on the role
of CAFs in invasion and metastasis to deduce the most promising mechanisms to target,
and to find the most urgent remaining knowledge gaps.

2. The Role of Fibroblasts in the Initiation of Invasion and Metastasis

Plato and Aristotle used the Greek word “metastasis” to describe change by revolution
of a political constitution [1]. In modern day society, the word metastasis is mostly related
to cancer, with a meaning derived from Greek implying “rapid transition from one point
to another”. The metastatic cascade in cancers can be divided into five main processes:
invasion, intravasation, circulation, extravasation, and colonization. CAFs can promote
ECM remodeling in different ways: by secreting factors, enzymes, and miRNAs; by the
generation of ECM tracks; and by inducing matrix stiffness (Figure 1) [2,3]. When we talk
about CAFs, we usually refer to a highly heterogeneous population of cells with different
functions. One of the ways to explain this heterogeneity could be the different origins that
CAFs may have. Although the majority of CAFs appear to originate from tissue resident
fibroblasts [4,5], recent research suggests that other origins of CAFs exist. It has been shown
that bone-marrow-derived mesenchymal stromal cells could give rise to a subpopulation of
CAFs that, in contrast to tissue resident fibroblasts, do not express platelet-derived growth
factor receptor A (PDGFRα) [6]. Another source of CAFs could be mature adipocytes [7],
and even tumor cells after the process of EMT, which will be discussed later.

In recent years, the efforts of researchers have focused on understanding the differ-
ences between the various CAF subpopulations in various tumor types in order to derive
clinical benefits. In pancreatic ductal adenocarcinoma (PDAC), two different CAF subtypes
were identified with different intratumoral localization and different transcriptomic pro-
files. Myofibroblastic CAFs (myCAFs) have a direct interaction with neoplastic cells and
high expression of alpha-smooth-muscle actin (αSMA), while inflammatory CAFs (iCAFs)
are located distally from the tumor cells and secrete high levels of IL-6 and some other
cytokines [8]. Similarly, in breast cancer, Friedman et al. described two main subpopula-
tions of CAFs: pCAFs and sCAFs, characterized by the expression of podoplanin (Pdnp)
and S100A, respectively. The function and the composition of these CAFs change during
tumor progression and the ratio between these populations is an indication of the clinical
outcome [9]. In accordance with this, the phenotypes of CAFs change during mammary
tumor progression [10]. In CRC, CAF-A and CAF-B were identified as two subtypes with
different gene expressions [11]. As CAF subpopulations are being studied more extensively,
the field is being updated frequently. These are only a few examples of works which try
to shed light on the different CAFs in the TME, and recent reviews are available on the
topic [12,13].

One of the big limitations of studying CAFs is the absence of markers that can be used
to specifically identify all subpopulations. To overcome this problem, different markers,
such as vimentin, αSMA, PDGFRα/β, and fibroblast activation protein α (FAP), are used
in combination to identify all the different subpopulations of CAFs in the tumor [14].

In conclusion, further research needs to be conducted in order to define different CAF
subpopulations in different tumor types and exploit this heterogeneity for clinical benefits.
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Figure 1. ECM remodeling and EMT modulated by CAFs. CAFs can modify ECM to promote invasion and metastasis of
cancer cells by: inducing matrix stiffness; creating tracks for cancer cell invasion; secreting proteases and cytokines. CAFs
can also induce EMT.

2.1. CAFs and ECM Remodeling

The ECM is a 3D scaffold that consists of around 300 unique macromolecules that
provide mechanical structure and chemical cues for cellular and tissue organization. The
ECM also binds factors related to growth, motility, survival, and angiogenesis, such as EGF,
TGF-β, HGF, VEGF, and others. The core matrisome encompasses mainly collagens and
glycoproteins and can be modified by secreted remodeling enzymes, such as oxidases and
proteases [15]. Cells are anchored in this ECM, which provides a stabilizing structure and a
framework that influences cell proliferation and survival, but also harbors other physiolog-
ical and biochemical cues for the cells [16]. When cells receive incoming signals from the
tiny ECM protrusions, called filopodia, the actin skeleton can be rearranged [16,17].

ECM modification is a physiological process that mostly occurs during development,
tissue regeneration, and wound healing [3,18]. Remodeling mechanisms include deposi-
tion, modification, degradation, and organization, which are strictly regulated in normal
conditions. Fibroblasts are the main producers of ECM components and ECM-remodeling
enzymes that contribute to stromal homeostasis [3]. However, in cancer, these mechanisms
are deregulated. Tumor growth and metastasis are highly dependent on the crosstalk
between tumor cells and their microenvironment. Some of the main contributors of cancer-
related ECM remodeling are deregulated lysyl oxidases (LOXs), matrix metalloproteinases
(MMPs), and transglutaminases (TGMs) [2,19,20]. For example, in CRC, MMPs have been
shown to significantly change the ECM composition. Under physiological conditions
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MMPs are kept in check by MMP inhibitor TIMP-3, which directly binds and inactivates
MMPs. The balance between TIMPs and MMPs is key for ECM stability, but, in CRC,
MMP-2 and MMP-9 expression are increased, along with a downregulation of TIMP-3
and collagen type IV leading to degradation of ECM. These changes are favorable to cell
proliferation, but, above all, also to invasion (Figure 1) [21].

As mentioned before, CAFs can facilitate invasion through the generation of tracks
in the ECM by digesting the matrix and, thereby, allowing cancer cells to leave the site
of origin (Figure 1) [5,22,23]. Force-mediated and protease-mediated matrix remodeling
are required for the formation of these tracks. Particularly, Rho–ROCK and MMPs play a
fundamental role for invasion of the cancer cells in this manner [24]. In accordance with
this, Neri et al. demonstrated that podoplanin (PDPN)-expressing CAFs, can boost the
invasion of cancer cells in lung adenocarcinoma through the activation of the Rho–ROCK
pathway [25]. Inhibition of tracks could be a potential means of preventing invasion and,
hence, metastasis.

2.2. CAFs Can Induce Stiffness of ECM

Matrix stiffness is defined as “the capacity of the matrix to resist deformation from
an applied force” and is mainly dependent on ECM organization and composition [26].
Tumor ECM has been shown to be 1.5 times stiffer than normal tissues [27]. Stiffness
promotes the assembly of actin-rich structures called invadosomes that are composed of
invadopodia and podosomes, which are important for the migration of cells [28]. Maybe
counterintuitively, multiple studies suggest that tumor stiffness is positively correlated
with cancer invasion and metastasis (Figure 1) [26,28–31]. A study conducted on 337 breast
cancer patients showed that higher matrix stiffness is associated with more aggressive
cancer subtypes [32]. Enzymes produced by CAFs contribute to increased stiffness of
tumor tissue and cause a higher synthesis of ECM as opposed to its degradation [5,33].
CAFs have the ability to digest the ECM in order to create tracks, as mentioned before,
but they also increase its stiffness. These two apparently opposed processes give the idea
of the complexity of these cells. Activated stromal cells produce LOXs, which are the
primary driver of collagen cross-link formation [5,34,35]. Collagen cross-linking is able to
promote matrix stiffness and cancer cell invasion [36]. When the YAP pathway is activated
in CAFs, it promotes matrix stiffness, which, in turn, induces the activation of YAP in CAFs,
enhancing a feedforward loop [37]. Torres et al. found lysyl oxidase like 2 (LOXL2) to
be overexpressed in CAFs of CRC samples, proposing it as a predictive prognostic factor
in colon cancer patients [38]. Therefore, targeting CAF-derived LOX oxidases has been
suggested as a potential target against cancer migration and invasion [34].

3. The Role of Fibroblasts in EMT and Migration

Mesenchyme comes from a combination of the Greek words “mésos”, which means
middle, and “enchyme”, which means cellular tissue. It refers to cells that develop into
connective tissue, blood vessels, and lymphatic tissue. For the development of cancer cell
metastasis, it is believed that cells need to undergo an additional step when the ECM is de-
graded: the acquisition of mesenchymal features. During tumor progression, the biological
process of EMT occurs when epithelial cells acquire mesenchymal features (Figure 1).

EMT transcription factors (EMT-TF) are activated early in EMT and include TWIST,
ZEB, and SNAIL/SLUG families. These markers can, in turn, upregulate a plethora of
mesenchymal marker genes and repress those associated with an epithelial phenotype,
such as genes involved in cell–cell adhesion and cell polarity [39]. It has been reported
that SNAIL and ZEB play critical roles in EMT in CRC. SNAIL not only induces EMT,
but also exerts cancer stem cell activities by activating interleukin-8 (IL-8) expression [40].
ZEB1 and ZEB2 are linked in a feedback loop with mir-200 and induce EMT and cancer
progression [41]. STAT3 can bind directly to the ZEB1 promoter and induce its expression
in CRC. In turn, ZEB1 downregulates E-cadherin, promoting EMT and invasion [42]. In
CRC patients, increased ZEB2 levels strongly correlate with worse relapse-free survival
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and dismal prognosis [43,44]. Furthermore, Francescangeli et al. found that a population
of quiescent/slow cycling cells are defined by ZEB2 expression and resist chemother-
apy [43]. Two additional EMT transcription factors (TFs) appear to be implicated in CRC,
i.e., forkhead box (FOX) family of TFs and the Prospero homeobox 1 (PROX1) transcription
factor [45].

One of the key CAF-released inducers of the EMT-TFs, and most studied one, is trans-
forming growth factor beta (TGF-β), which can modulate EMT via the TGF-βR/SMAD
pathway [46,47]. TGF-β plays a dual role in cancers, as it can act in a tumor-suppressive
manner in the early stages of tumor development, but can enhance tumor progression in
later stages by promoting EMT and cell proliferation. In CRC, loss of SMAD4 has been
shown to increase levels of TGF-β signaling and induce EMT [48]. Lamouille et al. demon-
strated that TGF-β can activate mTORC2, an actor of the PI3K/AKT pathway, which can
modulate the expression levels of genes relevant for the EMT process [49]. SMAD4 is also a
negative regulator of STAT3 signaling. Knockdown of SMAD4 can, therefore, lead to aber-
rant STAT3 activation, which, in turn, can lead to EMT and expression of ZEB1 in CRC [45].
Overexpression of the WNT/β-catenin pathway is another EMT promoter in CRC invasion,
in which both the canonical and noncanonical pathways are involved. IWR-1, a compound
that stabilizes the β-catenin destruction complex, and thereby inhibits Wnt pathway ac-
tivity, can inhibit EMT progression by suppressing survivin, a downstream WNT target
gene [50]. An example of a receptor of the noncanonical WNT pathway involved in EMT is
frizzled 2 (Fzd2). There is a high correlation between Fzd2, its ligands WNT5a/b, and EMT
markers [51]. It has been shown that Fzd2 expression enhances EMT and cell migration via
interaction with STAT3. Fzd2 has, therefore, been studied as a therapeutic target reducing
metastases in xenograft mouse models of CRC [45]; however, further research is required
to understand the role of Fzd2 and to develop it as a therapeutic target.

3.1. CAF-Secreted Factors

Communication of tumor cells and fibroblasts via proinflammatory cytokines plays
a crucial role in EMT. Some of these potentially metastatic CAF-secreted factors involved
in EMT have been studied extensively in the past years in multiple cancer types, such as
interleukin-6 (IL-6), osteopontin (OPN), hepatocyte growth factor (HGF), and CXCL12 [52–54].
CAF-derived IL-6 can induce EMT in multiple cancers, which is usually accompanied with
an enhanced migratory capacity of cancer cells and consequential invasion [55–57]. We
will discuss CAF-secreted IL-6 more in depth later on in this review. In cells undergoing
EMT, there is usually an upregulation of several mesenchymal markers, such as vimentin,
fibronectin, and N-cadherin, and a simultaneous downregulation of epithelial junction
proteins, such as E-cadherin, occludins, and claudins. These regulations can cause destabi-
lization of adherens junctions and, as a consequence, can facilitate migration and invasion.

In colorectal cancer, the cytokines HGF and OPN have been reported to be released by
CAFs, causing EMT [46]. OPN is a key regulator of EMT through the TWIST pathway [58].
In addition, CXCL12 is reported to be a strong activator of EMT. It is suggested to activate
the Wnt/β-catenin pathway via a CXCR4/CXCL12 axis, which leads to EMT and to
therapy resistance. Normally, this interaction of CXCR4 with CXCL12 regulates stem cell
trafficking [59,60], but hyperactivation of this axis commonly induces EMT in cancers [61].
CAFs are the biggest source of CXCL12 release in the tumor microenvironment (TME),
which is further stimulated by TGF-β1 [61,62]. This CXCR4/CXCL12 axis has been reported
to play an important role in CRC invasion and metastasis, and is being assessed as a
therapeutic CRC target [63].

CAFs can also undergo lipidomic reprograming and secrete lipid metabolites that
can be taken up by CRC cells and promote migration. This occurs partly through the
overexpression of vimentin and the downregulation of E-cadherin [64]. This is a relatively
new insight into the CRC invasion process and further research could provide a better
understanding of CRC metastasis.
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3.2. Stiffness in EMT

As mentioned before, ECM remodeling can result in a stiffer matrix, which can lead
to tumor growth and metastasis. CAFs are key contributors to this ECM stiffness by
tumor–CAF crosstalk or by inducing hypoxia within the tumor microenvironment [65]. In-
creased matrix rigidity has been shown to enhance the nuclear localization of transcription
factor TWIST1 and its release from the cytoplasmic anchor G3BP2, promoting EMT [66].
Other well-known actors involved in EMT caused by stiffness are S100A11 membrane
translocation, phosphorylation of elF4E, and autocrine TGF-β1. These converge on SNAIL
expression, a well-known actor of EMT [67]. In accordance with this, an increased matrix
rigidity induces EMT in pancreatic cancer [68]. In CRC, a stiffer matrix can increase the
secretion of activin A from stromal cells, which, in turn, can induce invasion through
the EMT-associated protein SNAIL. Inhibition of activin A may, therefore, represent an
interesting approach to target the induction of EMT [30].

4. CAF–Tumor Communication

In ancient Greek mythology, Hermes was an Olympian deity and functioned as the
messenger of gods. This ancient mythology can be applied to modern biomedical research:
communication through messengers that can make the difference between ontogenesis and
oncogenesis. One example is the multifunctional cytokine TGF-β that, in physiological
conditions, regulates different mechanisms, such as morphogenesis, development, wound
healing, and others, while, if deregulated, can promote aggressive phenotypes in cancers.
Once activated, CAFs can secrete various messengers that can promote invasion and metas-
tasis [69]. Some of these factors enhance EMT or ECM remodeling, as discussed in previous
paragraphs. Here, we will focus on other mechanisms promoted by CAF-secreted factors.

4.1. Communication through Exosomes

Increasing evidence shows that exosomes are crucial in intercellular communication
in cancer [70]. Exosomes are extracellular vesicles that are formed by invagination of the
endosomal membrane, budding into multivesicular bodies (MVBs), and the subsequential
release through fusion with the plasma membrane. Exosomes can be heterogeneous in
size and contain a variety of substances, including microRNA (miRNA), messenger RNA
(mRNA), DNA, proteins, and lipids. These exosome contents can act as paracrine and/or
autocrine factors and can be both inside the exosomes, as well as exposed on the surface
(such as TGF-β) [71]. Exosomes can be released by CAFs and internalized by cancer cells
or the other way around, as cancer cells can release exosomes to change normal fibroblasts
(NFs) into CAFs. Cancer-derived exosomes can induce differentiation of endothelial
cells to CAFs, of which the exosomes, in turn, can aid in cancer cell invasion [72,73].
Recent research identified CAF-secreted exosomes as playing a critical role in tumor–CAF
crosstalk and in cancer cell invasion [70]. CAF exosomes are enriched with TGF-β1, which
induces the phosphorylation of SMAD2/3 in ovarian cancer cells, promoting EMT and
invasion [70,74]. CAFs also secrete Wnt10b in exosomes, activating the Wnt/β-catenin
pathway, EMT, and promoting breast cancer cell metastasis. In particular, fibroblasts that
have low expression of p85α secrete more Wnt10b in exosomes, promoting, among others,
migration and invasion of cancer cells [75].

Exosomes can also contain microRNAs (miRNAs), which are involved in the regula-
tion of cancer. Among these miRNAs, miR-21 delivered by CAFs to CRC cells through
exosomes has been shown to promote metastasis [76]. In breast cancer, the expression
of CAF exosomal miR-21, miR-378e, and miR-143 promotes stemness and EMT [73]. In
CRC, CAF-derived exosomes can contain miR-92a-3p, which promotes stemness, invasion,
metastasis, chemotherapy resistance, and EMT. This miRNA targets FBXW7 and MOAP1,
whose overexpression enhances mitochondrial apoptosis and inhibition of stemness, re-
verting migration, invasion, and therapeutic resistance [77]. Exosomal miR-17-5p secreted
by CAFs targets RUNX3 in cancer cells, which enables MYC to activate the transcription
of TGF-β1 to promote metastasis and, in turn, activate fibroblasts, forming a cancer pos-
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itive feedback loop [78]. Recently, exosomes have been receiving increased attention as
potential therapeutic targets in cancer research; however, for secretory pathways to be
therapeutic targets, much more insight is needed to better understand the role of exosomes
in tumor–CAF crosstalk.

4.2. Communication through TGF-β/HGF

As mentioned before, TGF-β and HGF play key roles in several processes of cancer
development. TGF-β was initially discovered as a growth stimulant for rat fibroblasts,
but was soon found to play a major role in tumor–CAF crosstalk. TGF-βs are cytokines
that belong to the transforming growth factor superfamily. In cancer progression, it
seems to play a dual role: initially, it is a suppressor of tumor progression, but then can
turn into a promoter regulating fibroblast recruitment and activation [79]. It is widely
accepted that TGF-β promotes the differentiation of fibroblasts into CAFs, which, in turn,
secrete TGF-β, enhancing an autocrine signaling loop that maintains the activated status of
fibroblasts [80,81]. Once activated, CAFs secrete high levels of TGF-β1 that can upregulate
several EMT markers, such as vimentin, SNAIL, ZEB2, or long noncoding RNAs (lncRNAs)
and downregulate E-cadherin [82–84]. CRC cells express TGF-β at an early phase and
hyperactivate CAFs to express this cytokine. After mutational inactivation of TGF-β in
CRC, CAFs become the new factories of TGF-β production [81].

The proposed role of TGF-β in CAF formation and induction of EMT suggests that
targeting TGF-β could be an interesting approach against cancer invasion and metasta-
sis [22]. In contrast, inhibition of TGF-β enhances expression of the pro-invasion factor
HGF in CAFs, which suggests a negative regulation of TGF-β on HGF in fibroblasts [85].
According to this, TGF-β deficient fibroblasts increase the level of HGF, promoting invasion
of mammary carcinoma cells, through MET tyrosine receptors [86].

HGF is mainly secreted by fibroblasts and is a growth factor that acts on epithelial
cells. It interacts with MET to activate a signaling pathway that promotes cancer growth,
survival, and invasion [87,88]. The constitutive activation of this pathway can occur
through amplification or mutation in the MET gene in several tumors to evade regulatory
mechanisms of cancer formation [89,90]. HGF can promote the transition from a preinvasive
to an invasive phenotype of ductal carcinoma in situ (DCIS) cells. The activation of HGF/c-
MET induces the degradation of collagen IV through the expression and secretion of the
protease uPA and its receptor uPAR, which facilitates migration and invasion [91]. HGF
secreted by CAFs can also upregulate the IL-6 receptor in gastric cancer cells. In turn,
CAF-secreted IL-6 upregulates c-MET on the same cells. These two factors both collaborate
to promote the activation of STAT3 and, consequently, of TWIST1, enhancing EMT and
metastasis [92]. In the colon, HGF is secreted by smooth muscle cells lining the intestine,
but appears preferentially active in the crypt base [93]. In CRC, as in many other cancers,
overexpression of c-MET is correlated with poor prognosis and metastasis [93]. Stromal-
secreted HGF has been shown to modulate WNT signaling and diminish GSK3 activity,
which, in turn, stabilizes β-catenin. This induces cancer stem cell (CSC) features in tumor
cells and enhances WNT signaling in tumor cells that reside close to CAFs [94]. Overall,
TGF-β and HGF are two well-studied factors in CAF–tumor crosstalk and we will discuss
the therapeutic implications further on in this review.

4.3. Communication through IL-6/IL-8

One of the most studied cytokines in cancer research is IL-6. It can be produced by
many cells and it can promote tumor progression and therapeutic resistance [95]. IL-6 is
involved in tumor–CAFs crosstalk, it can modulate the activation of fibroblasts, and, at the
same time, support cancer cell growth. In particular, in esophageal carcinoma, binding its
receptor (IL-6Rα), IL-6 can induce STAT3 and MEK/ERK signaling pathways, promoting
proliferation and invasion of tumor cells [96]. As mentioned in the previous section, IL-6
has been associated with EMT and metastasis in different cancers. CAF-secreted IL-6
enhances migration and invasion of cancer cells, inducing the expression of EMT and



Cancers 2021, 13, 4720 8 of 18

metastatic-related genes. This process occurs through the activation of the JAK2/STAT3
pathway, both in lung cancer and gastric cancer [54,97]. In accordance with this, stromal
IL-6 promotes EMT and, consequently, migration and therapeutic resistance in esophageal
carcinoma [55]. It has been shown that CAF-derived IL-6 can also regulate the expression
of osteopontin (OPN) in tumor cells, as OPN promotes invasion of head and neck cancer
cells [98].

IL-8 is another molecule that plays a critical role in tumor progression and metastasis
in different cancers. In ovarian cancers, CAF-derived IL-8 promotes normal fibroblast
proliferation and stemness of tumor cells, activating the Notch-3 signaling pathway [99]. In
addition, in pancreatic cancer, a subtype of CAFs with senescent features secretes more IL-8
than non-senescent CAFs. This senescent subset promotes pancreatic cancer cell invasion
and metastasis [100]. Furthermore, melanoma cells cocultured with CAFs or treated with
conditioned medium derived from CAFs display increased invasive potential. This can
be reversed using IL-6 and IL-8 neutralizing antibodies, suggesting that the simultaneous
inhibition of both cytokines is a promising approach in melanoma [101]. In CRC, IL-6 plays
a significant clinical pathological role, as IL-6 is positively correlated with tumor TNM
stage and associated with invasion depth and lymph node metastasis [102]. Furthermore,
the expression of IL-6 and integrin β6 in CRC samples correlate with each other. IL-6
expression induces CRC invasion via the upregulation of integrin β6 through the IL-6
receptor/STAT-3 signaling [103]. Several clinical studies have been conducted targeting
the IL-6 pathway in CRC; however, no significant anticancer effects have been observed
yet with IL-6 monoclonal antibodies alone [104–107].

IL-8 is another potential therapeutic target, as the expression of IL-8 in the tumor
microenvironment induces colon cancer growth and metastasis [108]. However, to date,
the IL-8 inhibitors have also not yet been proven effective enough on their own [109–111].

4.4. Communication through Other Factors

Beside these major elements, there are many other factors that play a role in the induc-
tion of migration and invasion by CAFs. For example, interleukin-32 (IL-32) interacts with
integrin-β3 on cancer cells and activates p38 MAPK pathway, which promotes EMT and in-
vasion in breast cancer [112]. VCAM-1 is another highly secreted factor in CAF-conditioned
medium as compared to conditioned medium of normal fibroblasts. This promotes growth
and invasion of lung cancer cells through interaction with VLA-4 and the subsequent
activation of the AKT and MAPK signaling pathway [113]. In CRC, CAFs secrete WNT2
in order to promote migration and invasion of cancer cells [114]. Furthermore, WNT2
acts in an autocrine manner in CRC by activating the canonical WNT signaling pathway
in fibroblasts, and enhancing migration and invasion of both CAFs and CRC cells [115].
Moreover, CAFs stimulated with TGF-β secrete interleukin-11 (IL-11), which can promote
metastasis in CRC through the GP130/STAT3 pathway [116].

5. CAF-Targeted Therapies

Therapy is derived quite literally from the Greek word “therapeia”, which means
curing and healing. Differentially expressed CAF genes are potential targets for CAF-
directed therapies. These genes are usually involved in carcinogenesis, angiogenesis,
invasion, and metastasis. Targeting these genes and pathways opens possibilities to
sensitize patients to therapies to reverse drug resistance or inhibit tumor progression. CAF
targets are determined on genomic, transcriptional, and proteomic levels in CRC patients
and cell lines. Many pathways are stimulated by CAFs, which offer a variety of available
targets [5].

CAFs also have the ability to create an immunosuppressive TME, which inhibits both
the innate and adaptive immune responses. CAFs can induce T cell anergy, inhibit T
cell proliferation, recruit and activate T regulatory cells (Tregs), and prevent the access of
immune cells to cancer cells through ECM remodeling [117]. In CRC, CAFs are able to
recruit monocytes and facilitate their adhesion on tumor cells. Together with them, CAFs
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suppress the functions of natural killer cells (NK cells), which contribute to creating an
immune-suppressive environment [118]. The ability of CAFs to promote the polarization of
macrophages toward an immuno-suppressive and tumor-promoting phenotype has been
described in different tumors [119,120]. CAFs can promote dysfunction and impair the
cytotoxic function of NK cells. Similarly, in melanoma CAFs, secreting high levels of active
MMPs decrease the lysing capacity of NK cells [121]. CAFs play a key role in cancer-related
immune regulation and this topic deserves a more extensive review, for which we gladly
refer to the overview by Ziani et al. [122].

As we will focus on signals that regulate EMT, migration, and invasion, we will not
elucidate on immunotherapy. The therapies in the section are summarized in Table 1.

Table 1. Summary of CAF-targeted therapies.

Pathway Compound Targets Cancer Mechanism Ref.

MMP9 GS-5745 MMP9 Colorectal Inhibition of tumor growth
and metastasis [123]

Hedgehog
Smo Pancreatic

Decrease in fibroblast
accumulation and easier

drug delivery
[124]

Shh/Gli pathway Breast Reduction in cell migration
and invasion [125]

TGF-β

LY2109761 TGF-β receptor1 Hepatic Reduction in the stromal
compartment [126]

Galunisertib Ovarian
Prevention of CAF

activation and reduction in
proliferation and invasion

[127]

Realaxin-2 Smad2 pathway Pancreatic
Decrease in tumor growth

and increase in sensitivity of
gemcitabine

[128]

Artesiminin TGF-β Breast
Inactivation of CAFs and

inhibition of cancer growth
and metastasis

[129]

Reprograming

ATRA
HSP47 Pancreatic

Reprograming of PSCs,
reduction in Wnt signaling,

and modulation of
proliferation, apoptosis, and

invasion

[130]

Nano-system
(ATRA + anti

HSP47)

Reprograming of PSCs,
reduction in ECM

production, and increase in
chemotherapeutic effects

[131]

VDR ligand Induction of quiescent PSCs
from activated PSCs [132]

5.1. CAF Targeting via MMP9

MMPs are highly expressed in a wide range of tumor types and have been strongly
implicated to play a key role in tumor invasion and metastasis [133]. An anti-MMP9 mono-
clonal antibody GS-5745 was shown to successfully inhibit tumor growth and metastasis
in a colorectal cancer preclinical study in mice. However, in clinical trials, these MMP
inhibitors did not show an antitumor effect [34,123]. Many clinical trials with MMP9
inhibitors have failed due to toxicity or insufficient clinical benefit. Toxicity was shown
to be the consequence of MMP inhibitors circulating systemically; therefore, it would be
interesting to focus on local application, such as targeted delivery or topical administra-
tion [134]. On top of that, failures were attributed to bad clinical design and non-specificity
of MMP9 inhibitors [34]. As members of the MMP family are essential for the homeostasis
maintenance, inflammatory responses, angiogenesis, and wound healing, it is of impor-
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tance to focus on selectivity, as a broad range of MMP inhibitors can have detrimental
consequences [135–137]. Furthermore, the specificity of these inhibitors is often low with
off-target effects. However, a key reason for these failures might also be the lack of knowl-
edge on MMP roles and functions in the ECM microenvironment. Therefore, MMP9 still
remains a potential target that requires further research and optimization of specificity.

5.2. CAF Targeting via Hedgehog Signaling

Hedgehog (Hh) signaling is, in several cancers, a crucial modifier of CAFs and CAF-
induced cancer growth, invasion, and metastasis [125,138–140]. Hedgehog signaling
includes Sonic hedgehog (Shh), Desert hedgehog (Dhh), and Indian hedgehog (Ihh), all
ligands that can bind to the transmembrane protein Patched [141]. In the absence of Hh,
its ligand Patched represses the transmembrane receptor smoothened (SMO), leading to
the proteolytic cleavage of full-length glioma-associated oncogene (Gli) to Gli repressor
(GliR). Both Gli and GliR bind specific promoter regions and can, respectively, enhance
or repress transcription of Hh target genes [141]. When bound by ligand, Patched no
longer represses SMO and the Hh signaling pathway is activated, which has been shown
to increase cell migration and invasion in pancreatic cancer and human gliomas by upregu-
lating MMP9 expression [138]. As mutations in Patched1 or SMO can result in aberrant Hh
pathway activation, SMO is often a target of the Hh pathway inhibitors in cancer therapeu-
tics [142]. Inhibition of the Hh pathway or Shh ligands reportedly reduces tumor growth
and distant metastases of PDAC [143]. Interestingly, inactivation of the Shh/Gli1 axis sig-
nificantly reduces cell migration and invasiveness in breast cancer cells [125]. Desmoplasia
in pancreatic cancer not only facilitates tumor growth, but is also suggested to protect
tumor cells against chemotherapy due to elevated interstitial pressure, which prevents the
chemotherapy from reaching the cancer cells. Here, the treatment with an SMO inhibitor
decreased fibroblast numbers and increased vasculature density, leading to more effective
chemotherapy delivery [124,143]. Unfortunately, clinical trials with PDAC patients using
these SMO inhibitors in combination with gemcitabine have shown little to no efficacy [144].
Another phase II clinical trial of an SMO inhibitor and gemcitabine combination therapy
was suspended when patients receiving this treatment had a worse clinical outcome than
the group that received a placebo [143]. A proposed reason for these failures is that the
desmoplastic reaction induced by Hh signaling also restrains pancreatic cancer cells from
spreading to metastatic sites, which is abolished by the treatment. Balancing these effects
of the stromal compartment may be crucial in the development of effective therapies.

5.3. CAF Targeting via TGF-β

TGF-β is a potential CAF-derived target that can potentially prevent metastasis by
treating patients at an early stage. Different studies demonstrate that targeting this factor
is a promising approach against CAF-mediated cancer progression [126–129,145].

The TGF-β receptor 1 inhibitor LY2109761 can affect tumor progression, targeting the
crosstalk between stromal cells and cancer cells. In particular, this molecule can reduce the
stromal component of hepatocellular carcinoma (HCC) and the production of connective
tissue growth factor, which is highly produced by invasive HCC cells [126]. Galunisertib,
another TGF-β receptor 1 inhibitor, prevents the TGF-β-induced fibroblast activation
in ovarian cancer and, as a consequence, reduces migration and invasion of the cancer
cells [127]. Similarly, in pancreatic cancer, inhibition of TGF-β activation of pancreatic
stellate cells by the peptide hormone relaxin-2 can decrease tumor growth and potentiate
the effect of the chemotherapeutic drug gemcitabine [128].

Artemisinin derivatives have also been shown to suppress TGF-β signaling in CAFs.
This leads to the inactivation of CAFs and inhibition of cancer growth and metastasis.
These results make artemisinin derivatives new potential therapeutic agents in breast
cancer [129].
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5.4. CAF Reprograming

The role of CAFs in promoting tumor progression prompted researchers to think that
depletion of these activated stromal cells could be a potential therapeutic strategy. Surpris-
ingly, the depletion of myofibroblasts in pancreatic ductal adenocarcinoma (PDAC) does
not improve mice survival and leads to more aggressive, undifferentiated tumors [146,147].
Therefore, another approach for therapies against CAFs is the reprograming of tumor
stroma. This approach consists of remodeling activated fibroblasts into quiescent fibrob-
lasts that are normally present in homeostatic conditions. The aim of this approach is
to inhibit the tumor-promoting functions of CAFs and CAF-induced therapy resistance.
An example of this new strategy is in pancreatic cancer, where the hypovascularity of
the stroma limits therapeutic efficacy. Based on the observation that quiescent pancreatic
stellate cells (PSCs) store retinol, while the activated ones lose it, treatment of these cells
with all-trans retinoic acid (ATRA) is assessed to restore physiological activity of PSCs.
These reprogramed PSCs have the ability to produce secreted frizzled-related protein 4
(sFRP4), which reduces Wnt signaling in cancer cells and affects proliferation, apoptosis,
and invasion of these cells [130]. A nano-system that combines ATRA and HSP47 small
interfering RNA (siRNA), the latter of which is a collagen-specific chaperon crucial for the
secretion of collagen protein into the ECM, was used to restore the physiological condition
of PSCs. This reduces ECM production and, consequently, enhances pancreatic cancer
chemotherapy [131]. In addition, vitamin D receptor (VDR) ligands promote the transition
from activated to quiescent pancreatic stellate cells (PSCs), which lowers the secretion of
tumor-promoting cytokines from these cells [132].

Currently, there are no main CAF-directed therapies used in CRC patients. Never-
theless, several of the inhibitory strategies described above are being tested. Applying
such inhibitors, likely in combination with chemotherapy receptor-targeting therapies
or radiotherapy, might improve the treatment of CRC patients and hopefully lower the
incidence of metastatic spreading.

6. Conclusions

Cancer-related death is largely attributed to the complex metastatic process. The
recognition that CAFs are central players in this process has boosted CAF research in the
last decade. Understanding the underlying role CAFs play is, therefore, pivotal, as it seems
that targeting CAFs may be necessary to prevent therapy resistance and metastasis. Clinical
trials show promising results, but also prove that CAF-directed therapies are challenging
and still have a long way to go to get from bench to bedside. Surprisingly, CAFs in CRC
are still relatively understudied, despite the fact that CRC contains a subset with high
levels of stromal cells [148]. The fact that this so-called CMS4 mesenchymal subtype has
the worst prognosis, with an elevated metastatic capacity, makes it an interesting target for
CAF-directed therapy. However, not much is known about the differences in the role of
CAFs between the distinct CRC subtypes or even the specific role of CAFs in CMS4. Hence,
further research is essential in this field to reduce cancer-related deaths due to metastasis.
Research on this topic has shown that targeting CAFs can have opposing outcomes and
sometimes result in an even more aggressive phenotype. Therefore, it is of importance to
get a better understanding of different populations of fibroblasts surrounding tumors and
specifically target those causing invasion and metastasis.
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