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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Many of us had refresher courses in virology, immunology, and epidemiology in 2020, and

we were reminded of the fact that Homo sapiens, the wiliest predator on the planet, has

been hunting everything that moves for millennia. These repeated interspecies contacts

inherently lead to recurrent zoonosis (nonhuman to human) and anthroponosis (human to

nonhuman). Given the accelerating changes in our ecosystems since the neolithic revolu-

tion, it was not surprising to see a virus that spreads via aerosolization and liquid droplets

cause a pandemic in a few months. The Severe Acute Respiratory Syndrome Coronavirus 2

(SARSAU : Pleasenotethat� SARS � CoV � 2� hasbeendefinedas� SevereAcuteRespiratorySyndromeCoronavirus2� intheAbstractandinthemaintext:Pleasecorrectifnecessary:-CoV-2) pandemic begs the question—which viruses could cause a global threat? In

this Opinion, the characteristics that make adenoviruses a risk, which include efficient intra-

and interspecies transmission, thermostable particles, persistent/latent infections in diverse

hosts, and the ability to readily recombine and escape herd immunity, are discussed.

Introduction

What combination of viral and host characteristics will favor the next pandemic? A prioritized

checklist might include (i) efficient transmission by aerosolization; (ii) asymptomatic spread-

ers and latent infections that foster a high reproductive number (R factor); (iii) the aptitude of

the pathogen to generate “variants” that circumvent herd immunity; (iv) no available drugs

able to prevent virus propagation or disease; (v) a thermostable particle resistant to disinfec-

tants and that can remain infectious for days while on tissue, metal, or plastic; (vi) multiple

and highly conserved portals (receptors) to infect cells and tissues; (vii) propensity of the virus

to be endemic in settings that then foster rapid regional and intercontinental spread; and (viii)

susceptibility to cyclic zoonotic and anthroponotic exchanges that favor large and diverse res-

ervoirs. Adenovirus fulfills these requisites. Of note, this list is not exhaustive, nor are all the

factors essential.

A fertile environment for propagation

In the 1950s, Rowe and colleagues were culturing cells from human adenoids that underwent

spontaneous degeneration [1]. From these cultures, they isolated an adenovirus. AdenoviridaeAU : PleasenotethatasperPLOSstyle; taxonomiclevelfamilyshouldnotbeitalicized:Hence;� Adenoviridae� hasbeenchangedtoregulartextthroughoutthearticle:
is aAU : Pleaseconfirmthattheeditstothesentence� Adenoviridaeisafamilyofnonenvelopedicosahedralparticlesofapproximately:::� arecorrect; andamendifnecessary:family of nonenveloped icosahedral particles of approximately 90 nm in diameter and con-

tains a double-stranded linear DNA genome of 26,000 to 48,000 bp. Like many other viruses,
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adenoviruses encode multitasking structural and regulatory proteins. These viral proteins

interact with the host proteome and genome to allow receptor-mediated uptake, endosomal

escape, intracellular trafficking, genome replication and transcription, preferential translation

of viral mRNA, genome encapsidation, and release of metastable virus particles. Adenoviridae

is found on every continent and now includes more than 300 officially recognized types iso-

lated from mammals, fish, birds, and reptiles [2]. Adenoviruses that infect humans (human

adenoviruses [HAU : Pleasenotethat}HAdVs}hasbeendefinedas}humanadenoviruses}inthesentence}Adenovirusesthatinfecthumans:::}:Pleasecheckandcorrectifnecessary:AdVs]) belong to the genus Mastadenoviridae and are grouped into 7 species

(A to G), which include approximately 100 types that are categorized by serology and/or

sequence phylogeny (http://hadvwg.gmu.eduAU : PleasenotethattheURL}www:hadvwg:gmu:edu}inthesentence� Adenovirusesthatinfecthumans:::� isnotvalid=accessible:Pleasecheck; andprovideanupdatedURL:).

Anecdotal reports suggest that most of the approximately 160 Mastadenoviridae can be

propagated (some up to 50,000-fold amplification/cycle/cell) in cell culture, readily purified,

concentrated, and stored long term. These characteristics led to their use as molecular and cel-

lular biology tools throughout the 1970s and 1980s to complement biochemical and structural

analyses. Using adenoviruses as a model system, pioneering studies in DNA replication and

RNA splicing helped establish the bases of modern molecular and cellular biology [3,4]. Yet,

there is still much to be discovered. For example, at the molecular level greater than 800, alter-

natively spliced mRNAs from a HAdV have been recently annotated [5].

With respect to our immune response to HAdVs, epidemiological data generated during

the last 6 decades suggest that, similar to some α- and β-coronaviruses, greater than 90% of us

have been infected by a handful of HAdV types by the time we are a few years old [6]. Most

HAdV infections cause type-specific, asymptomatic, self-limiting disease in the respiratory

tract, conjunctiva, and/or gastrointestinal tract. The incubation period is typically 5 to 8 days,

and shedding can continue for several weeks [7]. Data from healthy and immunosuppressed

individuals are consistent with the idea that some HAdVs induce latent/persistent infections

that last for decades [8]. Persistent infections are also coherent with clinical data showing that

in patients undergoing pharmaceutical or disease-induced immune suppression, adenoviremia

can be traced to the seroprevalence of the same type before immune suppression [8].

By most measures, the humoral and cellular immune responses to HAdV infections are

multifaceted and robust [9–11]. Importantly, we are only beginning to understand how

extracellular proteins (e.g., antibodies, coagulation factors, complement, and host defense

proteins) influence the innate response of antigen-presenting cells [12,13]. HAdV type–spe-

cific antibodies are typically generated following vaccination or infection. Because most

HAdV infections of civilians are self-limiting, immune correlates for protection have not

received much attention. However, it is worth noting that in military recruits, HAdV-E4

neutralizing antibody (NAb) titers >1:32 are typically protective (n.b., some recruits with

HAdV-E4 NAbs are nonetheless hospitalized with acute respiratory disease (ARD) [14,15].

Interestingly, cross-reactive antibodies can, in some cases, provide protection against

HAdV disease [16]. While protection provided by cross-reactive antibodies has not been

thoroughly examined, vaccination with HAdV-E4 and -B7 does provide protection against

HAdV-B14. In addition, Russell and colleagues found that individuals who harbor naturally

occurring (i.e., not by vaccination) HAdV-B7 NAbs are less likely to develop HAdV-B14–

associated disease during an outbreak in a military training facility [7]. These observations

complicate the dogma surrounding 50 years of epidemiology studies based on the idea that

we develop type-specific NAbs following HAdV infections. It is likely that protective, het-

erotypic B cell responses may be efficient against HAdV from very similar types (i.e.,

humoral responses against HAdV-B7 protect against HAdV-B14 but not vice versa or

against HAdV-B35).

In addition to a humoral response to HAdVs, long-lived memory T helper type 1 (Th1AU : Pleasenotethat� Th1� hasbeendefinedas� Thelpertype1inthesentenceInadditiontoahumoralresponsetoHAdVs; long � lived:::Pleasecorrectifnecessary:) cel-

lular response is found in all cohorts. Notably, Mastadenoviridae contain highly conserved
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regions in the internal base of hexon that are targets of cross-reactive memory T cells, which

are likely refined at each encounter with a different HAdV type [17,18]. The ability to amplify

anti-HAdV memory T cells ex vivo, and then infuse these cells to patients to treat adenovirus

disease, is a life-saving therapy for some individual undergoing solid organ or bone marrow

transplants [19].

Yet, several times a year, HAdV outbreaks cause severe disease or death in a population of

healthy civilians in resident care facilities, prisons, or military training camps [20]. For exam-

ple, HAdV-B3 and HAdV-B7 cause repeated outbreaks of ARD in China. After decades of

being prevalent in Eurasia, HAdV-B14 (isolated in a military training camp in the Netherlands

in the 1960s) appeared in the United States near 2005, killing 18% of the 38 cases in Oregon.

By 2015, HAdV-B14 had become endemic in US military training facilities and caused spo-

radic epidemics in civilian populations. Typically, outbreaks in healthy populations disappear

within several weeks. While these events are sporadic, severe HAdV disease is a constant and

lethal threat in immunocompromised individuals undergoing hematopoietic stem cell or solid

organ transplants [8]. Factors such as lack of preexisting immunity, physical and mental stress,

and overcrowding increase the risk of infection with respiratory pathogens. Environments

where these factors exist include civilian and military training facilities, staff and patients at

long-term psychiatric care facilities, children in day care, and elderly individuals and staff at

chronic care facilities centers. These scenarios also bring to the front a dichotomy that is diffi-

cult to reconcile: In individuals with intact B-cell functions, but compromised T-cell responses,

HAdV infection can lead to fulminant and fatal disease [8]. In addition, treating patients with

intravenous immunoglobulin (IVIgAU : Pleasenotethat � IVIg� and � IgGs� havebeendefinedas� intravenousimmunoglobulin� and � immunoglobulinGs� inthesentence� Inaddition; treatingpatientswithintravenousimmunoglobulinðIVIgÞðpurifiedimmunoglobulin:::� Pleasecorrectifnecessary:) (purified immunoglobulin Gs (IgGs) from 5,000 to

10,000 individuals), which contains NAbs against many HAdV types, has mixed success

against advanced HAdV disease.

Receptor options and cytoplasmic trafficking

The thousands of replication-defective human and nonhuman adenovirus vectors generated

over the last 40 years have been invaluable tools to understand adenovirus uptake in mam-

mals, fish, amphibians, and birds. Using naturally occurring capsids, or taking advantage of

their LEGO-like structural adaptability to swap proteins and motifs from other types, our

understanding of adenovirus receptor engagement is rich in detail [21]. The options for an

adenovirus finding a cell surface entity that can be used as an initial port of entry include

highly conserved cell adhesion molecules, complement receptors, lectin-binding proteins,

ubiquitous heparan sulfate proteoglycans, and sialic acid–tagged proteins [22]. OtherAU : Pleaseconfirmthattheedittothesentence� Otheropportunitiesforcellengagementincludeinteractionswithsolubleextracellular:::� iscorrect; andamendifnecessary:oppor-

tunities for cell engagement include interactions with soluble extracellular proteins (e.g.,

opsonizing antibodies, vitamin K–dependent coagulation factors, antimicrobial peptides,

and complement components system) that act as bridges to other ubiquitous cell surface

entities (e.g., Toll-like receptors) [23], which diversify the options for engagement and inter-

nalization. I posit that either via direct receptor engagement or via an appropriate soluble

extracellular protein, most adenoviruses can be internalized to some extent by most nucle-

ated mammalian cells.

Are there species-specific restriction factors that could prevent adenovirus receptor-medi-

ated internalization, escape from the endosome, trafficking through the cytoplasm, docking at

the nuclear, and delivery of their genome into the nucleus? Adenoviruses use highly conserved

cellular transport mechanisms along microtubule tracks to reach the nuclear pore, where they

bind and deliver their genome to the nucleus [21]. No (efficient) host restriction factor pre-

cludes adenovirus uptake by human, monkey, ape, dog, sheep, cow, rodent, or bird cells in

vitro or in vivo.
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Recombination and transcription

One characteristic favoring virus longevity is the constant production of mutants that can

endow selective advantages. A source of mutants is, in part, the lack of fidelity of the viral poly-

merase. Viruses with an RNA genome, such as influenza and coronaviruses, tend to accumu-

late mutations relatively quickly, and these mutations provide opportunities to escape

preexisting immunity. Yet, at 1.3 × 10−7 mutations/bp, the adenovirus polymerase (assuming

all are similar to HAdV-C2) is relatively high fidelity. Furthermore, essentially identical

genomes of some adenovirus types can be found decades apart [24]. While a high-fidelity poly-

merase limits genetic drift, recombination provides a pathway to generate new adenoviruses

with altered tissue tropism and the ability to escape host defenses [25,26]. It is worth repeating

that at the end of the roughly 36-hour replication cycles, there are greater than 50,000 copies of

the adenovirus genome/cell. If 2 adenovirus types are found within the same cell, the probabili-

ties of recombination events, even within short stretches of homology, are significant.

As mentioned above, persistence and latency also provide an ideal milieu for the encounter

of multiple HAdV types in a host. Due to increased efficacy of broad-range PCR, the number

of “novel” human and nonhuman adenovirus types is rapidly expanding [2]. A study in which

whole-genome sequence analyses were used to discriminate, type, and characterize HAdVs

supports the idea that homologous recombination is responsible for the genesis of numerous

types with distinct virulence. The fastest expanding clades are those from those of Mastadeno-
viridae species B and D [25,26]. An example of increased virulence is HAdV-B55, in which

HAdV-B14 acquired part of the hexon open reading frame (hexon is the major structure outer

capsid component and targeted by NAbs) from HAdV-B11. HAdV-B55 escapes preexisting

immunity and has caused severe respiratory disease in individuals in hospitals, schools, and

military training facilities [27]. Of note, increased virulence of some “new” types is also due to

changes in tissue tropism, which may be linked in some cases to the homing of memory T cells

[28].

Host infidelity

The volume of interactions between humans and animals is increasing in many areas. Mass

production of livestock in poor hygienic conditions reduced antigen exposure in humans due

to urbanization, megacities, and affordable international travel, abet zoonosis, and anthropo-

nosis (Fig 1). Next-generation sequencing has uncovered an extraordinary diversity of adeno-

virus types and has led the field to reexamine origin, diversity, host range, and epidemiological

data. It appearsAU : Pleaseconfirmthattheedittothesentence� Itappearsprobablethathumanbehavioroverthelast200:::� iscorrect; andamendifnecessary:probable that human behavior over the last 200 years has had a greater influ-

ence on adenovirus evolution than the previous 10,000 years, but this is difficult to prove. An

analysis by Bayesian molecular clock dating could, potentially, address the issue of adenovirus

evolution [29]. In addition, considering what has been discovered regarding the interspecies

transmission of canine, simian, and HAdVs, it is not inconceivable that what has previously

been interpreted as “species specificity” might actually reflect the lack of contact rather than an

inability to infect related species [30].

During the last 60 years, conclusions based on epidemiological analyses led to the dogma

that most members of Mastadenoviridae have a host range limited to a single or closely related

species. Ockham’s razorAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; pleaseadviseif OckhamsrazorinthesentenceOckhamsrazorfavorsthenotionthatregulatoryproteinsencodedby:::shouldbechangedtoRomanstyleorbeenclosedinquotationmarks:favors the notion that regulatory proteins encoded by the early region

1 (E1) (which encodes transactivating factors and proteins that inhibit apoptosis or modify the

cell cycle) and E4 (which encodes proteins involved in transcription, mRNA processing and

transport, cell cycle, cell signaling, and DNA repair) limit host switching [31]. This is because

viral and host proteins interact in defined orientations, and deviations in protein structure,

charge, and subcellular location will preclude efficient virus propagation. This rationale is
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embodied by the E1a protein from HAdV-C2 [32], which may interact with 200 human

proteins.

Our improved understanding of Mastadenoviridae diversity and host origin is, paradoxi-

cally, due in part to the search for, and sequencing of, nonhuman primate adenoviruses as

potential vaccine vectors [33] (see Projection). At the moment, the only Mastadenoviridae spe-

cies E member found in humans (HAdV-E4) falls within a gorilla/chimpanzee clade [2]. Phy-

logenetic analyses also place the 16 original HAdV-B types as pathogens originating in great

apes [34]. Inexplicably, HAdV-E4, HAdV-B7, and HAdV-B14 are endemic in many military

training centers in the USA, China, Turkey, Canada, Finland, and the Netherlands and cause

unusually severe disease. The factors that allowed HAdV-E4 and HAdV-B7 to impact military

training centers, which are home to typically healthy 18- to 27-year olds for approximately 12

weeks, are poorly understood and not unique to adenoviruses. To prevent the loss of strategic

military readiness, recruits in several countries were vaccinated with live oral HAdV-E4 and

HAdV-B7, which significantly reduced disease at the facilities for 25 years. When the vaccine

stocks were exhausted in 1999, HAdV-E4 and HAdV-B7 disease frequency erupted again in a

couple of years. Was the “remontadaAU : PleasenotethatasperPLOSstyle; italicsshouldnotbeusedforemphasis:Hence; pleaseadviseif remontadainthesentenceWastheremontadaduetosheddingbyasymptomatictrainingstaff ?shouldbechangedtoRomanstyleorbeenclosedinquotationmarks:” due to shedding by asymptomatic training staff? Or was

it due to reintroduction by new recruits? Of note, greater than 98% of recruits were seronega-

tive at enrollment [7]. Importantly, the study was unable to find active HAdV-E4 infections in

the onsite staff or recruits on day 1. At the centers tested, all trainees became HAdV-E4 sero-

positive within 6 weeks.

Fig 1. Many mammals have latent adenoviruses (red capsid in humans, green in monkeys, orange in bats) that are

controlled by anti-adenovirus memory T cells in healthy hosts. These viruses may have replicated and induced

asymptomatic or mild disease in the respiratory or gastrointestinal tract. Notably, in primates, adenovirus types that

generate respiratory tract infections are often shed via the gastrointestinal tract. When a host encounters another type

(blue capsids) that propagates in the same tissue, the opportunity for recombination increases. If a recombination

event gives a selective advantage (e.g., escape of immune surveillance, modified tissue tropism, and alternative

receptors) to the new type (multicolored capsids), it can be passed to other individuals to reinitiate the same scenario.

Mutations that increase the host range (e.g., in the DBP) also occur randomly and expand the reservoirs and increase

the propensity for zoonotic and anthroponotic exchanges—and the creation of more virulent types. DBPAU : AnabbreviationlisthasbeencompiledforthoseusedinFig1:Pleaseverifythattheentryiscorrect:, DNA-

binding protein.

https://doi.org/10.1371/journal.ppat.1009814.g001
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In addition to HAdV-E4 and HAdV-B7, there are widespread anecdotal and specific

[35,36] examples of adenovirus exchanges between simians and humans. A Titi monkey ade-

novirus caused a virulent outbreak in the monkey colony and also infected a member of the

research staff [36]. The researcher then spread the simian virus to family members. Medkour

and colleagues recently concluded that many additional Mastadenoviridae species C types are

endogenous in gorillas and humans (there are currently 5 types found routinely in humans)

[37]. Taking into account species infidelity and recombination, Seto and colleagues proposed

that HAdV-B76 was generated from recombination events of a virus that infected humans,

chimpanzees, and bonobos [25]. At the apex of host range infidelity may be the 2 canine ade-

novirus types (CAdV-1 and CAdV-2). CAdV-1 and CAdV-2 infect dogs and wolves of course,

but antibodies can also be found in jackals, foxes, coyotes, racoons, skunks, bears, pandas, sea

lions, walruses, fur seals, and dolphins [38,39]. More ominous is that phylogenetically CAdVs

fall in the middle of a bat adenovirus clade [40].

If there is a candidate for host switching, the 72-kDa DNA-binding protein (DBP) should

get special attention. DBP is required for the initiation and elongation of the adenovirus

genome and was identified during the initial characterization of DNA replication in the 1970s

[41]. Its role in replication is consistent with the approximately 10 million copies produced/

infected cell. While DBP was methodically examined at the functional levels over 40 years ago,

the structure of the nucleic acid–binding cAU : PleasenotethatasperPLOSstyle; theterm}carboxylterminus}shouldbeusedwhenitfunctionsasanouninasentence:arboxyl terminus could only be solved when the

intrinsically disordered 20-kDa N terminus was removed [42]. The DBP enigma was born

when HAdV-C2 and HAdV-C5, which efficiently grew only in human cells, were serially

passed on monkey cells. Eventually, a handful of “host range” mutants broke through [43].

The remarkable result was that each mutant had a histidine to threonine switch in the N termi-

nus of DBP (at amino acid [aAU : Pleasenotethat}aa}hasbeendefinedas}aminoacid}inthesentence}Theremarkableresultwasthat:::}:Pleasecheckandcorrectifnecessary:a] 129) [44]. It is also noteworthy that the N terminus can be

phosphorylated at 15 sites, which create a potential combination of greater than 32,000 forms)

—and likely plays a critical role in the formation of membraneless virus replication centers

(VRCs) via liquid–liquid phase separation [45]. The formation of supramolecular structures is

caused by proteins containing intrinsically disordered regions made up of short linear interac-

tion motifs, alternating charge blocks, or degenerate repeats [46]. It is therefore reasonable to

propose that DBP plays a fundamental role in the forces that drive VRC formation—and ipso

facto genome replication. How do mutations in DBP favor host switching though? While there

has been some success with the isolation of VRCs, their composition is still unresolved. Oppos-

ing mechanisms could lead to the same downstream effect: The addition of a phosphorylatable

threonine at aa 129 allows the recruitment of factor(s) in monkey cells that favor(s) replication,

transcription, or RNA transport. Conversely, the mutation prevented the recruitment of ade-

novirus restriction factor(s) to the VRC that favored replication, transcription, or RNA trans-

port. The list of possibilities is vast.

Projection

The recurrence of pandemics has accelerated in the last 150 years: 1 in the first half of 20th cen-

tury (1918 influenza pandemic), 3 in the second half (Asian flu, Hong Kong flu, and AIDS),

and now 4 in the first 20 years of 21st century (SARS, H1N1 “porcine” flu, Zika, and Severe

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)). At the beginning of the current

pandemic, many virologists were not surprised that another coronavirus appeared—only that

it was so virulent. It will not escape the attention of seasoned virologists that all of the above

are RNA viruses. While DNA viruses are typically considered an unlikely source as pandemic-

provoking pathogens, primarily because of the fidelity of their polymerases, adenovirus vari-

ants can be generated via other pathways. Although some would be surprised to see an
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adenovirus pandemic, there are fertile ecosystems that cannot be ignored. As delineated in the

introduction, Mastadenoviridae constitute an exception among DNA viruses. Still, skepticism

is not without merit. If adenoviruses are a threat, why hasn’t it happened before? Have humans

escaped an “adenovirus pandemic”? Based on seroepidemiological data of some HAdV types

(like the species C members), my conclusion is “no.” Have we escaped a “deadly” pandemic”?

Yes, for now. Is there a missing trigger? Do we need more stress? A breakdown of public health

systems? A chance encounter with a bat or a nonhuman primate? Paradoxically, as the adeno-

virus-based (HAdV-C5, HAdV-D26, and chimp adenovirus ChAdOx1) SARS-CoV-2 vaccines

are being deployed [33], we will need to take into account their long-term impact on zoonosis

and anthroponosis and our susceptibility to nonhuman primate adenoviruses. Will these vac-

cines prevent, have no impact, or foster the emergence of an adenovirus pandemic? Some

HAdV-C5, HAdV-D26, and ChAdOx1 vaccine genomes will be taken up by circulating T cells

—the same cells where one finds latent adenoviruses. Will this be the one-in-a-million chance

trigger? On the other hand, what better vaccine platform exists than a replication-defective

adenovirus vector to combat an adenovirus pandemic?
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