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ABSTRACT The FANTOM5 consortium recently characterized 65,423 human enhancers from 1829 cell and tissue samples using the
Cap Analysis of Gene Expression technology. We showed that the guanine and cytosine content at enhancer regions distinguishes two
classes of enhancers harboring distinct DNA structural properties at flanking regions. A functional analysis of their predicted gene
targets highlighted one class of enhancers as significantly enriched for associations with immune response genes. Moreover, these
enhancers were specifically enriched for regulatory motifs recognized by transcription factors involved in immune response. We
observed that enhancers enriched for links to immune response genes were more cell-type specific, preferentially activated upon
bacterial infection, and with specific response activity. Looking at chromatin capture data, we found that the two classes of enhancers
were lying in distinct topologically associating domains and chromatin loops. Our results suggest that specific nucleotide compositions
encode for classes of enhancers that are functionally distinct and specifically organized in the human genome.
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GENE expression is regulated throughmany layers, one of
which being the regulation of the transcription of DNA

segments into RNA. Transcription factors (TFs) are key pro-
teins regulating this process through their specific binding to
the DNA at regulatory elements, the TF binding sites (TFBSs)
(Wasserman and Sandelin 2004). These regulatory elements
are located within larger regulatory regions such as promoters
and enhancers (Mathelier et al. 2015b). While promoters are
situated around transcription start sites (TSSs), enhancers are

distal to the genes they regulate. The canonical view is that
chromatin conformation places enhancers in close 3D proxim-
ity to their target gene promoters through DNA looping (Visel
et al. 2009; Andersson et al. 2015; Babu and Fullwood 2015).
The high-resolution chromatin conformation capture (Hi-C)
technology maps genomic regions in spatial proximity within
cell nuclei (Lieberman-Aiden et al. 2009). It identifies specific
genomic neighborhoods of chromatin interactions, the topo-
logically associating domains (TADs), which represent stable
chromatin compartments between cell types and conserved
across species (Dixon et al. 2012, 2016).

Studies have shown relationships between the composi-
tion of a DNA sequence in guanine (G) and cytosine (C) and
chromatin organization, for instance in relation to nucleo-
some positioning (Hughes andRando 2009; Tillo andHughes
2009) and chromatin architecture (Jabbari and Bernardi
2017). DNA sequence composition and other features of
promoter regions, such as CpG islands, have been exten-
sively studied. The Cap Analysis of Gene Expression (CAGE)
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technology (Shiraki et al. 2003; Kodzius et al. 2006), which
identifies active TSSs in a high-throughput manner based on
59 capped RNA isolation, accelerated our capacity to analyze
human promoters. Using CAGE data, a large-scale identifica-
tion of the precise location of TSSs in human (Carninci et al.
2005) led to the classification of promoters into four classes,
based on G+C content (%GC) (Bajic et al. 2006). GC-rich pro-
moters are associated with genes involved in various binding
and protein transport activities and GC-poor promoters
with genes responsible for environmental defense responses.
While promoters overlapping CpG islands are commonly as-
sumed to be ubiquitous drivers of housekeeping genes, com-
prehensive analysis of CAGE data from.900 human samples
showed that a subset deliver cell-type-specific expression
[FANTOM Consortium and the RIKEN PMI and CLST (DGT)
et al. 2014].

Large-scale computational analyses of enhancer regions
have been hampered by a limited set of bona fide enhancers.
The CAGE technology can identify in vivo-transcribed en-
hancers. Specifically, it identifies active enhancer regions in
biological samples by capturing bidirectional RNA tran-
scripts at enhancer boundaries (Andersson et al. 2014). Us-
ing this characteristic of CAGE data, the FANTOM5 project
identified 65,423 human enhancers across 1829 CAGE li-
braries [Andersson et al. 2014; FANTOM Consortium and
the RIKEN PMI and CLST (DGT) et al. 2014; Arner et al.
2015]. Sequence property analysis suggested that the en-
hancers share properties with CpG-poor promoters (Andersson
et al. 2014).

As enhancers are distal to the genes they regulate, it is
challenging to predict these relationships. Based on cross-
tissue correlations between histone modifications at en-
hancers and CAGE-derived expression at promoters within
1000 bp, enhancer–promoter links have been shown to be
conserved across cell types (O’Connor and Bailey 2015). As
the CAGE technology captures the level of activity for both
promoters and enhancers in the same samples, recent studies
predicted enhancer targets by correlating the activity levels
of these regulatory regions over hundreds of human samples
(Andersson et al. 2014; Cao et al. 2017). Enhancer–gene
associations were supported by experimental data from
ChIA-PET and Hi-C, and eQTL data (Andersson et al. 2014;
Cao et al. 2017). Further, Andersson et al. (2014) unveiled
that closely spaced enhancers were linked to genes involved
in immune and defense responses. These results stress that
predictions of enhancer–promoter associations are critical to
decipher the functional roles of enhancers.

Here, we used the G+C content at human, CAGE-derived,
enhancer regions to define two classes of enhancers. Based
on the enhancer–gene target pairs characterized by both
Andersson et al. (2014) and Cao et al. (2017), we showed
that the class of enhancers with a lower G+C content was
predicted to be functionally associated with genes involved in
the immune response. Accordingly, regulatory motifs asso-
ciated with immune response TFs like NF-kB are enriched
in the DNA sequence of the immune response-related set

of enhancers. Independent functional analysis of histone
modification and CAGE data highlighted a cell-type speci-
ficity of these enhancers along with their activation upon
bacterial infection. Moreover, the class of enhancers enriched
for associations with immune system genes was observed
with a distinct response activity pattern following cell stim-
ulation in time-course data sets. Finally, the two classes of
enhancers tended to be structurally organized within dis-
tinct TADs and DNA chromatin loops.

Materials and Methods

Human enhancers

Weretrieved thehg19positions of the 65,423human enhancers
from phases 1 and 2 of the FANTOM5 project in BED12 format
from http://fantom.gsc.riken.jp/5/datafiles/phase2.2/extra/
Enhancers/human_permissive_enhancers_phase_1_and_2.
bed.gz alongwith the 1829CAGE library ids fromhttp://fantom.
gsc.riken.jp/5/datafiles/phase2.2/extra/Enhancers/Human.
sample_name2library_id.txt [Andersson et al. 2014; FANTOM
Consortium and the RIKEN PMI and CLST (DGT) et al. 2014;
Arner et al. 2015]. We extracted DNA sequences for regions of
1001 bp centered at the enhancer midpoints (columns 7–
8 of the BED12 file) using the BEDTools (Quinlan and Hall
2010) to computeG+C contents.We considered the distribution
of the G+C content of all the enhancers (mean� 45%; median
� 44%; SD � 8) to distinguish two classes of enhancers (%GC
below the median, class 1; and %GC above the median, class 2;
Figure 1a).

Clusterization of human enhancers based on positional
distribution of G+C content

DNA sequences of 1001 bp centered at the enhancer midpoints
were converted to binary vectors with 1 encoding G or C and
0 encoding A or T. Eleven enhancers were not considered as the
considered sequences containedundefinednucleotides (N in the
International Union of Pure and Applied Chemistry (IUPAC)
notation). The vectors were clustered using the k-means algo-
rithm implemented in the KMeans function of the scikit Python
module (Pedregosa et al. 2011). The silhouette plots (Supple-
mental Material, Figure S1) were constructed for k 2 ½2; 5�
(silhouette_samples function of the scikit Python module). For-
mally, the silhouette plots display the silhouette coefficient for
each enhancer as ðb2 aÞ=maxða; bÞwhere a is the mean intra-
cluster euclidean distance and b the mean nearest-cluster eu-
clidean distance.

Distribution of enhancers in the human genome

The distribution of enhancers from the two classes in 39 UTR,
59 UTR, intergenic regions, transcription termination sites,
intronic regions, noncoding and coding exons, and promoter
regions in Figure S3a were obtained using the HOMER
(v.4.7.2) annotatePeaks.pl scriptwith annotations from thehuman
genome hg19 v.5.4 (http://homer.ucsd.edu/homer/). Distances
to TSSs for Figure S3b were obtained using the same script.
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Repetitive elements

Repetitive elements coordinates (hg19) were retrieved from
the RepeatMasker track of the University of California Santa
Cruz (UCSC) Table browser tool (https://genome.ucsc.edu/
cgi-bin/hgTables). The overlaps between enhancers and re-
petitive elements were obtained using the intersect subcom-
mand of the BEDTools requiring a minimum overlap of 50%
of the enhancer lengths.

Expression quantitative trait loci

The v6p GTEx cis-eQTL (expression quantitative trait loci)
corresponding to eGene with significant SNP–gene associa-
tions based on permutations (GTEx_Analysis_v6p_eQTL.tar)
were downloaded from the GTEx Portal at https://www.
gtexportal.org/home/datasets. The cis-eQTL (all tissues
combined) located in enhancers were retrieved with the
intersect subcommand of the BEDTools. Enhancers were
linked to genes following cis-eQTL variant–gene associations
(2459 and 5857 genes for class 1 and class 2, respectively,
Table S2). Four hundred thirty-seven genes were common to
the two classes. Significance of the intersection was assessed
with 1000 random assignments of the two classes to en-
hancers (with 32,487 and 32,936 enhancers in each class).
No intersection of # 437 potential target genes was obtained
(empirical P-value , 1023).

Enhancer–gene targets

We considered two sets of enhancer–gene pairs derived from
the correlation of CAGE signal at enhancers and (i) CAGE-
derived or (ii) RefSeq-annotated TSSs [Andersson et al. (2014)]
(http://enhancer.binf.ku.dk/presets/human.associations.hdr.
txt.gz and http://enhancer.binf.ku.dk/presets/enhancer_tss_
associations.bed). A third set of enhancer–gene pairs was
obtained from Cao et al. (2017) where associations were
obtained by first computing a lasso-based multiple regres-
sion between CAGE signals at each TSS and proximal
enhancers from all FANTOM5 samples and then using
sample-specific information to obtain sample-specific pairs
(http://yiplab.cse.cuhk.edu.hk/jeme/fantom5_lasso.zip).
To rely on high-quality enhancer–gene pairs, we considered
the intersection of the pairs of enhancer–gene targets pre-
dicted by the three data sets.

We used these pairs for promoter sequence analyses. We
extracted DNA sequences of 6500 bp around gene starts
(ENSEMBL hg19 coordinates) using the BEDTools getfasta
subcommand (Quinlan and Hall 2010) and computed aver-
age G+C content using the GC function of Biopython (Cock
et al. 2009).

MNase profiles

MNase-seq signal from ENCODE for cell lines GM12878
and K562 were obtained as bigWig files from the UCSC
genome browser website at http://hgdownload.cse.ucsc.
edu/goldenpath/hg19/encodeDCC/wgEncodeSydhNsome/
wgEncodeSydhNsomeGm12878Sig.bigWig and http://

hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/
wgEncodeSydhNsome/wgEncodeSydhNsomeK562Sig.bigWig.
Average MNase-seq signal values at enhancer regions were
computed using the agg subcommand of the bwtool tool (Pohl
and Beato 2014) with regions spanning 62000 bp around
the enhancers’ midpoints.

DNA shape feature plots

The values of 13 DNA structural features were retrieved from
the GBshape browser (Chiu et al. 2015) as bigwig files at
ftp://rohslab.usc.edu/hg19/. We retrieved the averaged
DNA shape values at the enhancer regions from class 1 and
class 2 using the agg subcommand of the bwtool tool (Pohl
and Beato 2014). The normalized averaged DNA shape val-
ues were computed independently for each enhancer class
using the equation:

normvalue ¼ ðvalue2minvalueÞ=ðmaxvalue 2minvalueÞ

where normvalue is the normalized value to be computed for a
DNA shape at a specific position in the DNA sequence, value is
the averaged DNA shape value at this position for the en-
hancers in the class, and minvalue (maxvalue) is the minimum
(maximum) averaged DNA shape value for the enhancers in
the class. The 90% confidence intervals for each DNA shape
feature at each position was computed using a bootstrap ap-
proach. Specifically, random subsampling of enhancers was
used to construct 100 sets of 10,000 randomly selected en-
hancers from classes 1 and 2. Average DNA shape values
were computed for each random set, and values from the
5th and 95th percentages were used to define the 90% con-
fidence intervals.

DNA sequence shuffling

The 62000 bp DNA sequences around enhancer midpoints
were shuffled with the m subcommand of the BiasAway tool
to conserve mononucleotide composition (Worsley Hunt
et al. 2014).

Gene ontology functional enrichment

To construct Figure 2a, official symbols corresponding to the
promoters associated with enhancers from class 1 and class
2 (Table S3) were submitted to GOrilla (Eden et al. 2009) at
http://cbl-gorilla.cs.technion.ac.il/ (January 7, 2017 up-
date). We used the two unranked lists option with genes
associated with enhancers from either class 1, class 2, specific
to class 1, specific to class 2, or common to class 1 and class
2 as targets and the aggregated set of genes associated
with the full set of enhancers as background. We submitted
the enriched gene ontology (GO) biological processes with
FDR, 0:01 to REViGO (Supek et al. 2011) at http://revigo.
irb.hr/ asking for a “small” output list. GOrilla outputs are
provided in Tables S4 and S5.

To construct Figure 2b, genes were ranked based on the
number of enhancers predicted to target them in decreasing
order (Tables S6 and S7). This ranked list was submitted to
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GOrilla using the ranked list option. Enriched GO terms were
retrieved as described above (Table S8).

Motif enrichment

We applied Centrimo (Bailey and Machanick 2012) (MEME
suite version 4.11.1) with default parameters to 1001-bp-
long DNA sequences around the midpoints of enhancers.
Class 1 enhancer regions were used as foreground and class
2 enhancer regions as background and vice versa. The MEME
databases of motifs considered for enrichment were de-
rived from Jolma et al. (2013) (jolma2013.meme), JASPAR
(Mathelier et al. 2015a) (JASPAR_CORE_2016_vertebrates.
meme), Cis-BP (Weirauch et al. 2014) (Homo_sapiens.meme),
Swiss Regulon (Pachkov et al. 2013) (Swiss_Regulon_
human_and_mouse.meme), and HOCOMOCO (Kulakovskiy
et al. 2016) (HOCOMOCOv10_HUMAN_mono_meme_format.
meme). The same procedure was applied to promoter regions
(61001 bp around gene starts) associated with class 1 and class
2 enhancers.

Figure 3, a and b has been obtained from the html output
of Centrimo by selecting the three most enriched motifs
(ranked using the Fisher E-value; Data S1 and S2, https://
doi.org/10.5281/zenodo.1283306).

Genome segmentation

ENCODE genome segmentation: The genome segmentation
from combined ChromHMM (Ernst and Kellis 2012) and
Segway (Hoffman et al. 2012) for ENCODE tier 1 and tier
2 cell types GM12878, H1hesc, HelaS3, Hep G2, HUVEC, and
K562 were retrieved from http://hgdownload.cse.ucsc.edu/
goldenPath/hg19/encodeDCC/wgEncodeAwgSegmentation/.

Genome segmentation in dendritic cells: The genome seg-
mentation of dentritic cells before and after Mycobacterium
tuberculosis infection (Pacis et al. 2015) was computed using
ChromHMM (Ernst and Kellis 2012) and retrieved at http://
132.219.138.157:8080/DC_NI_7_segments_modID.bed.gz
and http://132.219.138.157:8080/DC_MTB_7_segments_modID.
bed.gz.

Genome segmentation overlap with enhancers: The over-
laps between enhancers and genome segmentswere obtained
using the intersect subcommand of the BEDTools requiring
a minimum overlap of 50% of the enhancer lengths. We con-
sidered enhancers as in active states if they overlapped the
TSS, promoter flank, enhancer, weak enhancer, and tran-
scribed segments.

RELA ChIP-seq data analyses

The ENCODE RELA ChIP-seq data in GM12878 cells was
retrieved at http://hgdownload.cse.ucsc.edu/goldenPath/
hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncode
AwgTfbsSydhGm12878NfkbTnfaIggrabUniPk.narrowPeak.gz.
To identify active FANTOM5 enhancers in GM12878, we
considered the overlap between 1001-bp-long regions around
enhancers’ midpoints and genome segments predicted

by ChromHMM and Segway combined as enhancer or weak
enhancer. The identified 1001-bp-long active enhancer re-
gions were overlapped with RELA ChIP-seq peaks with the
intersect subcommand of the BEDTools.

Enhancer expression specificity

The cell-type expression specificity of enhancers was com-
puted as

12

 
entropyðenhancer expressionÞ
log2ðnumber of cell typesÞ

!

in Andersson et al. (2014). Each enhancer expression was
represented by a vector of expression values in each cell
type, which corresponded to the mean of the enhancer
expression in the samples associated with the cell types.
The binary matrix of enhancer usage across FANTOM5 sam-
ples was obtained at http://enhancer.binf.ku.dk/presets/
hg19_permissive_enhancer_usage.csv.gz. The association
between FANTOM5 samples and cell types was obtained
from Tables S10 and S11 in Andersson et al. (2014). Heat
maps in Figure 6 were computed using the colormesh
function of the matplotlib.pyplot Python module (Hunter
2007).

Enhancer dynamics

FANTOM5 classification in the 14 dynamics displayed in Fig-
ure 8was obtained from Auxiliary data table S3 in Arner et al.
(2015). The classification provided response class assign-
ments to 1294 and 2800 class 1 and class 2 enhancers, re-
spectively. Response classes were assigned to 2827 and
4406 genes associated with class 1 and class 2 enhancers,
respectively. Note that enhancers and promoters can be
assigned to multiple response classes.

Corresponding plots (Figure 8) and enrichment analy-
ses were performed using pandas Python data structure
(McKinney 2010) and the scipy Python library (http://
www.scipy.org/) in the IPython environment (Perez and
Granger 2007).

Chromatin conformation data

The enrichment for enhancers associated with a specific class
in each TAD or chromatin domain (see below) was computed
using Binomial test P-values as implemented by the binom.
test function in the R environment (R Core Team 2016). As a
control, we randomly assigned the labels class 1 and class 2 to
the enhancers and computed the corresponding Binomial test
P-values; this procedure was applied to 1000 random trials.
Density plots were obtained using the density function in the
R environment with the adjust parameter set to 0.5.

Topologically associating domains: As TADs have been
shown to be conserved between cell types and species, we
retrieved the TADs defined in the first study describing them
(Dixon et al. 2012). The TADs were predicted in mouse em-
bryonic stem cells and we used the liftOver tool from the
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UCSC genome browser at https://genome.ucsc.edu/cgi-bin/
hgLiftOver to map them to hg19 coordinates.

Chromatin loops: The positions of the chromatin loops
computed with the HICCUPS tools (Rao et al. 2014) from
Hi-C data on the GM12878, HMEC, HUVEC, HeLa, IMR90,
K562, KBM7, andNHEK human cell lines were retrieved from
GEO at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE63525. Density plots were obtained using the den-
sity function in the R environment with the adjust parameter
set to 0.5.

Enrichment P-values

P-values throughout the manuscript were computed using
the Fisher’s exact test except otherwise stated.

Data availability

All of the supplemental materials are provided on zenodo at
https://doi.org/10.5281/zenodo.1283306.

Results

Guanine and cytosine nucleotide content identified two
classes of human enhancers

To analyze the sequence properties of human enhancers, we
considered regions of 1001 bp around the midpoints of the
65,423 CAGE-derived enhancers from phases 1 and 2 of the
FANTOM5 project [Andersson et al. 2014; FANTOM Consor-
tium and the RIKEN PMI and CLST (DGT) et al. 2014; Arner
et al. 2015].

We sought to identifydistinct classes of enhancers basedon
the positional distribution of guanines (Gs) and cytosines (Cs)
along the enhancer regions. Specifically, each enhancer was
represented by a 1001-bp-long binary vector with 1s repre-
senting G+Cand 0s representing adenines (As) and thymines
(Ts). We clustered the enhancers by applying the k-means
clustering algorithm (MacQueen 1967) on the vectors. To
select the number of clusters k, we considered silhouette
plots, which provide a visual representation of how close
each enhancer in one cluster is to enhancers in neighboring
clusters (Rousseeuw 1987). A visual inspection of cluster
silhouettes with k 2 ½2; 5� revealed that the best clustering
was obtained with k ¼ 2 (Figure S1). We extracted the two
clusters (k ¼ 2) of enhancers (containing 42,248 and 23,164
enhancers, respectively) and observed distinct average G+C
compositions (Figure S2).

As the clusterization highlighted distinct G+C content
between the two classes of enhancers (mean� 45%; median
� 44%; SD � 8), we distinguished enhancers with lower
(%GC below the median; 32,487 enhancers) and higher
(%GC above the median; 32,936 enhancers) %GC content
(Figure 1a). The two classes are hereafter referred to as class
1 (with lower %GC content) and class 2 (with higher %GC
content). As expected, we observed a large overlap between
the two clusters obtained from the k-means algorithm

applied to the positional patterns of G+C and the two classes
defined from %GC (Jaccard similarity coefficients of 0.77 and
0.7, respectively).

As the mere %GC was sufficient to distinguish classes of
enhancers and given the simplicity of this criterion, we used
this classification in the following analyses. We sought to
further explore the positional distribution of the %GC along
the enhancer and their flanking regions in classes 1 and 2.We
considered 62000-bp DNA sequences 59 and 39 of the mid-
points of the enhancers and computed the %GC at each po-
sition (Figure 1b). We observed distinct positional patterns of
G+C content at DNA sequences flanking the enhancers from
the two classes. The distinct patterns were emphasized when
focusing on the differences in positional patterns of %GC
from class 1 and class 2 enhancers represented as the nor-
malized average G+C content separately for the two classes
(Figure S5a). This result was expected as the k-means cluste-
rization of the G+C positional patterns provided a classifica-
tion of enhancers similar to classes 1 and 2. Class 1 enhancers
harbored a stronger decrease in %GC at their midpoints
when compared to class 2 enhancers. Moreover, the regions
surrounding the class 1 enhancers harbored a symmetric
decrease in %GC going away from the midpoints with
a minimum at �300–400 bp from the midpoints; it was fol-
lowed by an increase in %GC. On the contrary, we observed a
continuous symmetric decrease in %GC composition going
away from class 2 enhancer midpoints. Nevertheless, both
class 1 and class 2 enhancers harbored a symmetrical de-
crease of %GC in regions of�300–400 bp around midpoints.

The two classes of enhancers are associated with
distinct interspersed nuclear elements

The two classes of enhancers harbored similar proportions of
enhancers located in intronic (� 55 and� 49% of class 1 and
class 2 enhancers, respectively) and intergenic (� 44 and
� 48% of class 1 and class 2 enhancers, respectively) regions
(Figure S3a) but class 2 enhancers were found closer to TSSs
than class 1 enhancers (Figure S3b). A third of class 1 en-
hancers (10,791) and 22% of class 2 enhancers (7165)
overlapped repetitive elements. In agreement with their
nucleotide composition, class 1 enhancers were enriched in
(A)n and (T)n simple repeats and in AT-rich low complexity
sequences while class 2 enhancers harbored G-rich and C-rich
low complexity sequences (Table S1). Further, long inter-
spersed nuclear elements were enriched in class 1 enhancers
while no difference was observed for short interspersed nu-
clear elements (Table S1).

DNA regions flanking the two classes of human
enhancers harbored distinct DNA structural properties

As DNA sequence and shape are intrinsically linked, we next
considered 13 DNA shape features computed from DNA
sequences with the DNAshape tool (Zhou et al. 2013; Chiu
et al. 2016): buckle, helix twist (HelT), minor groove width
(MGW), opening, propeller twist (ProT), rise, roll, shear,
shift, slide, stagger, stretch, and tilt (Li et al. 2017). We
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plotted the distribution of these DNA shape features along
the enhancers and their flanking regions for the two classes
following the same procedure used for analyzing the G+C
content (Figure 1, c–e, Figure S4, and Figure S5). We
assessed the pattern differences between class 1 and class
2 enhancers by computing Kolmogorov–Smirnov (K-S) sta-
tistics. The three largest K-S statistics were obtained when
considering MGW, stretch, and HelT (Figure 1, c–e). The
main differences between class 1 and class 2 enhancers were
observed for regions flanking the enhancers while the regions
, � 200 bp away from the midpoints harbored very similar
patterns; this observation was consistent between all 13 DNA
shape features (Figure 1, c–e and Figure S5, b–n). These
observations were in agreement with the %GC-patterns ob-
served close to the enhancer midpoints with a symmetric
decrease in G+C content and differences when considering
flanking regions (Figure 1b). The DNA shape patterns are lost
when shuffling the DNA sequences (Figure S6).

Taken together, these results described two subsets of
human enhancers distinguishable by their G+C content with
distinct positional distribution of %GC along the regions
flanking the enhancers, which were reflected in their DNA
structural properties. Importantly, we observed that the en-
hancer classification based on %GC highlighted distinct pat-
terns of DNA shape features along the regions immediately
flanking theenhancersbutnotat theenhancer central regions,
indicating that the two classes of enhancers are located in
distinct genomic environments.

The two classes of human enhancers associated with
distinct biological processes

Different classes ofmammalian promoters, derived from their
nucleotide composition, were observed to be associated with
genes linked to distinct biological functions (Bajic et al.2006).
Following the same approach, we sought for a functional in-
terpretation of the %GC-based classification of human en-
hancers. We first aimed at characterizing whether the
enhancers from the two classes were associated with distinct
sets of target genes based on cis-eQTL associations from the
GTEx project. For each enhancer class, a list of potential tar-
get genes was obtained for enhancers overlapping with cis-
eQTL single nucleotide polymorphisms (see Materials and
Methods). We found 2459 and 5857 genes linked to class
1 and class 2 enhancers, respectively (Table S2), with only
437 genes in common (P-value ,1023; Fisher’s exact test,
see Materials and Methods). It suggests that the %GC-based
classification of human enhancers distinguished enhancers
regulating different sets of genes.

As the number of enhancer–gene associations is limited
from the cis-eQTL analysis (since it requires SNPs in QTL to
be located within the enhancers), we drew CAGE-derived
enhancer–gene pairs from two previous studies (Andersson
et al. 2014; Cao et al. 2017). Based on correlations be-
tween promoter and enhancer activities derived from CAGE
data in human samples, Andersson et al. (2014) linked en-
hancers to their potential gene promoter targets. Two sets of

associations were computed, based on either CAGE-derived
TSSs from FANTOM Consortium and the RIKEN PMI and
CLST (DGT) et al. (2014) or RefSeq-annotated TSSs. More
recently, the JEME method (Cao et al. 2017) used CAGE
signal to predict enhancer–gene pairs based on two steps:
(1) multiple regression between a TSS and all enhancers in
the neighborhood of this TSS across samples; and (2) extrac-
tion of sample-specific enhancer–gene pairs. Application of
JEME to FANTOM5 samples resulted in a third set of en-
hancer–gene pairs (Cao et al. 2017). Importantly, both
FANTOM5 and JEME-based associations were supported by
ChIA-PET, Hi-C, and eQTL data (Andersson et al. 2014; Cao
et al. 2017).We intersected the predictions of enhancer–gene
pairs from these three data sets to rely on high-confidence
pairs. We noticed that G+C content of promoters targeted
by class 1 enhancers is lower than that of promoters targeted
by class 2 enhancers (Figure S7, Wilcoxon test P-value
,2.2e216).

To infer the biological functions of enhancers, we assumed
that each enhancer was associated with the same biological
functions as the genes it was predicted to regulate. We sub-
mitted the two sets of genes associated with class 1 and
class 2 enhancers to the GOrilla and REViGO tools (Eden
et al. 2009; Supek et al. 2011) to predict enriched
(FDR  q-value, 0:01) GO biological processes. Class 1 en-
hancers were predicted to target 1413 genes whereas class
2 enhancers were linked to 2838 genes (Table S3). In ag-
gregate, the enhancers corresponded to a set of 3575 genes,
of which 676 were common to the two classes (representing
� 48; � 24; and� 19%of class 1, class 2, and the combined
set of genes, respectively). The aggregated set of 3575 genes
was used as the background set of genes for enrichment
analyses.

Biological processes linked to immune system processes
and response to stimulus were found enriched for genes
associated with class 1 enhancers: “immune system process”
(q ¼ 6:253 1029), “positive regulation of immune sys-
tem process” (q ¼ 1:683 1026), “defense response”
(q ¼ 5:493 1027; and “regulation of response to stimulus”
(q ¼ 3:573 1024) (Figure 2a and Table S4). The GO term
“immune system process”was found enrichedwith 647 genes
predicted to be targets of class 1 enhancers (Table S4). When
considering the genes predicted to be regulated by enhancers
from class 2, no GO biological process term was found
enriched.

When focusing on the genes predicted to be exclusively
targeted by enhancers from class 1 or class 2, we did not find
enrichedGOterms. Finally,weconsidered the setof genes that
were predicted to be common targets of enhancers from the
two classes. GO terms associated with immune system pro-
cess, response to stimulus, and cytokine production were
foundenriched (TableS5).Theenrichmentof immunesystem
process-related terms was expected as �48% of the target
genes of class 1 enhancers are predicted to be targets of class
2 enhancers as well. While immune system genes are tar-
geted by enhancers from both class 1 and class 2, class
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1 enhancers are more specifically associated with immune
system genes.

Further, we observed that genes linked to the immune
response were targeted by a greater number of enhancers

than other genes.We ranked the list of genes by the number of
enhancers they were associated with (Table S6) and sub-
mitted this list to GOrilla for functional enrichment analysis.
This list was derived from 8339 pairs (Table S7, 2672 and

Figure 1 DNA sequence features at enhancers. Features associated with human enhancers from class 1 and class 2 are represented in red and green,
respectively. (A) Histogram of the %GC of the enhancers. (B) Distribution of the average %GC (y-axis) of the enhancers in classes 1 and 2 along DNA
regions of62000 bp centered at enhancer center points (x-axis). (C–E) Average DNA shape values (y-axis) along the DNA regions of62000 bp centered
at enhancer midpoints (x-axis) for DNA shape features MGW (C), Stretch (D), and HelT (E). Shadow regions represent the 90% confidence intervals
obtained from bootstrapping (see Materials and Methods). The largest Kolmogorov–Smirnov statistics between class 1 and class 2 enhancers were
obtained with these three DNA shape features.
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5667 pairs with enhancers from class 1 and class 2, respec-
tively). The GO biological process terms “immune system
process,” “regulation of immune system process,” “defense
response,” “response to stimulus,” and “regulation of re-
sponse to stimulus” were found at the top of the enriched
terms (Figure 2b and Table S8). Furthermore, from the
1661 enhancer–gene pairs where the gene is associated with

“immune system process” (Table S9), 621 were derived from
class 1 enhancers, showing that class 1 enhancer–gene asso-
ciations are enriched in the list of enhancer–gene pairs linked
to “immune system process” (Fisher’s exact test P-value =
2:653 1027).

Taken together, the functional enrichment results revealed
that a classification based on the G+C content of human

Figure 2 Functional enrichment analysis. Enriched GO biological processes (y-axis; log10 P-value , 2 5) obtained using the GOrilla and REViGO tools
(Eden et al. 2009; Supek et al. 2011) with genes predicted to be regulated by enhancers from class 1 (a) and the ranked list of genes (by decreasing
number of associated enhancers) predicted to be regulated by class 1 or 2 enhancers (b). The enhancer–gene pairs were recurrently predicted in three
sets of enhancer–gene associations (see Materials and Methods).

1062 C.-H. Lecellier, W. W. Wasserman, and A. Mathelier



enhancer regions featured two sets of enhancers predicted to
be regulating genes enriched for distinct biological functions.
Specifically, while genes linked to “immune system process”were
enriched for being linked to a high number of enhancers, the
functional enrichments showed that class 1 enhancersweremore
specifically targeting genes involved in the immune response.

Distinct TFs predicted to act upon the two classes of
human enhancers

We sought to identify TF binding motifs enriched within each
class of enhancers, to suggest driving TFs for their distinct
biological functions. We considered 1001-bp-long DNA se-
quences centered at the enhancers’ midpoints. Positional

Figure 3 TF binding analysis at enhancer regions.
Regions of 6500 bp around enhancer midpoints (a
and b) were subjected to positional motif enrich-
ment analyses using the Centrimo tool (Bailey and
Machanick 2012) with motifs from JASPAR (Mathelier
et al. 2015a), Cis-BP (Weirauch et al. 2014), Swiss
Regulon (Pachkov et al. 2013), and HOCOMOCO
(Kulakovskiy et al. 2016). Enhancers from class 1 (a)
and class 2 (b) were analyzed separately. The x-axis
represents the distance to the enhancer midpoints.
The y-axis represents the probability of predicting
TFBSs associated with the motifs given in the legend
boxes. Plain lines represent the distribution of pre-
dicted TFBSs in the foreground sequences (from class
1 and class 2). Similarly, dashed lines represent the
distribution of predicted TFBSs in the background se-
quences (from class 1 and class 2). Note that the SP1
PWMs enriched in class 2 enhancers originate from
Weirauch et al. (2014) (M1906_1.02) and Kulakovskiy
et al. (2016) (SP1_HUMAN.H10MO.S). (c) Proportion
of class 1 (left) and class 2 (right) active enhancers in
GM12878 bound or not by the RELA TF (using ChIP-
seq data).
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motif enrichment analyses were performed using the Cen-
trimo tool (Bailey andMachanick 2012) to predict TF binding
motifs overrepresented at enhancers. Class 1 enhancer re-
gions were compared to class 2 regions and vice versa to
highlight specific motifs (Figure 3, a and b and Data S1 and
S2). The most enriched motifs in class 1 enhancer regions
were related to the nucleosome-remodeling factor subunit
BPTF and the nuclear factor k-light-chain-enhancer of acti-
vated B cells (NF-kB)/Rel signaling [NFKB1, REL, and RELA
(Liou 2006) and BACH2 (Itoh-Nakadai et al. 2014); Figure 3a
and Data S1 and S2], in agreement with an involvement of
class 1 enhancers in the immune response biological function
(Figure 2). Motifs associated with the Specificity Protein/
Krüppel-like Factor (SP/KLF) TFs were enriched in class 2 en-
hancer regions (Figure 3b and Data S1 and S2). Members of
the SP/KLF family have been associated with a large range of
core cellular processes such as cell growth, proliferation, and
differentiation (Presnell et al. 2015). A similar analysis based
on gene promoters associated with class 1 and class 2 en-
hancers did not yield enriched motifs.

We confirmed the motif-based enrichment of NF-kB/REL/
RELA binding in class 1 enhancers by using ENCODE ChIP-
seq data obtained in GM12878 cells for the RELATF involved
in NF-kB heterodimer formation. By combining data capturing
histone modification marks, TF binding, and open chromatin
regions from a specific cell type, the ChromHMM (Ernst and
Kellis 2012) and Segway (Hoffman et al. 2012) tools segment
the genome into regions associated with specific chromatin
states. Focusing on predictions from ChromHMM and Segway
combined, we found 3486 (� 11%) and 4649 (� 14%) active
enhancer regions from classes 1 and 2, respectively. We ob-
served that class 1 active enhancers were preferentially bound
by RELA. Specifically, 904 active class 1 enhancers and 897 ac-
tive class 2 enhancers overlapped RELA ChIP-seq peaks
(P-value ¼ 1:23 10212; Fisher’s exact test; Figure 3c).

Together, these results reinforced the predictions of bi-
ological functions specific to class 1 and class 2 enhancers
(Figure 2) through the presence of associated TF binding
motifs at enhancers.

The two classes of human enhancers exhibited distinct
activity patterns

We further investigated the functional differences between
the two classes of human enhancers by analyzing their pat-
terns of activity across cell types. Inprevious studies, enhancer
activity has been inferred either from histone modifications
or eRNA transcription signatures (Ernst and Kellis 2012;
Hoffman et al. 2012; Natoli and Andrau 2012; Andersson
et al. 2015). We considered these two approaches with his-
tonemodification data from six cell lines and CAGE data from
71 cell types produced by the ENCODE (ENCODE Project
Consortium 2012) and FANTOM5 (Andersson et al. 2014)
projects, respectively.

We retrieved the human genome segmentation obtained
using ChromHMM and Segway in the tiers 1 and 2 cell types
from ENCODE (ENCODE Project Consortium 2012). For each

cell type, we overlapped enhancers with predicted genome
segments to assign activity states to the enhancers. As an
example, Figure 4 presents the proportion of enhancers from
classes 1 and 2 overlapping with segments associated with
active, CTCF, and repressed chromatin states in embryonic
stem cells (H1-hESC). We consistently observed that en-
hancers from class 2were significantlymore active than those
from class 1, which were found to be enriched in repressed
genomic segments (Figure 4 and Figure S8). Class 2 en-
hancers were also associated with segments characterized
by CTCF binding.

To further validate these predictions, we specifically in-
vestigatednucleosomeoccupancyat classes1and2enhancers
and extracted availableMNase data at these regions from two
cell lines, GM12878 and K562 (Figure 5). Nucleosomes oc-
cupancy at class 1 enhancers was found higher than that at
class 2 enhancers (Figure 5) in both cell lines, indicating that
class 2 enhancers were more associated with nucleosome-
depleted regions, in agreement with their higher transcrip-
tional activity than class 1 enhancers in GM12878 and K562
cells (Figure S8, a and e).

From the human samples with CAGE expression from the
FANTOM5 project (Andersson et al. 2014), 71 cell types were
defined by grouping cell and tissue samples. For each en-
hancer, Andersson et al. (2014) computed the entropy of
expression of the enhancer across all the cell types. The en-
tropy was used to compute a cell-type-specificity score for
each enhancer [see Materials and Methods and Andersson
et al. (2014)]. The cell-type-specificity score ranges from
0 to 1 with 0 indicating ubiquitous expression and 1 exclusive
expression in one cell type. Using this enhancer expression
specificity computation, we considered enhancers from class
1 and class 2 separately to highlight potential activity

Figure 4 Human enhancers and genome segmentation. Histogram of
the proportion of human enhancers (y-axis) in class 1 (red) and class
2 (green) lying within genome segments (x-axis) as annotated by com-
bined predictions from ChromHMM (Ernst and Kellis 2012) and Segway
(Hoffman et al. 2012) on human embryonic stem cells [H1-hESC from the
ENCODE project (ENCODE Project Consortium 2012)]. Statistical signifi-
cance (Bonferroni-corrected P-value,0:01) of enrichment for enhancers
from a specific class is indicated by “**.”
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differences in the 71 cell types (Figure 6, a and b). Comparing
enhancer activity specificity over all the cell types, enhancers
from class 1 appeared to be more cell-type specific (Figure
6c). While immune cells, neurons, neuronal stem cells, and
hepatocytes were previously described to use a higher frac-
tion of human enhancers (Andersson et al. 2014), the ele-
vated utilization was even more pronounced for class 1
enhancers (Figure 6c).

Taken together, these results derived from histone marks
and transcriptional datahighlighted that enhancers fromclass
2 were more ubiquitously active over human cell types than
enhancers from class 1, which weremore cell-type specific. In
our previous functional analyses, we inferred the biological
functions of the two classes of enhancers from the genes they
were predicted to regulate. Here, we further confirmed spe-
cific functionalities for the two classes based on enhancer
activity analyses, which corroborated with our functional
analysis described above. Enhancers from class 1 were more
cell-type specific, with an emphasis in cell types associated
with the immune system, in agreement with the functional
enrichment analysis.

Predicted immune system enhancers were activated
upon cell infection

We sought to further confirm the association of class 1 en-
hancers with transcriptional control of immune responses.
Pacis et al. (2015) generated genome-wide DNAmethylation,
histone marks, and chromatin accessibility data in normal
dendritic cells (DCs) and DCs after infection withMycobacte-
rium tuberculosis (MTB). It provided the opportunity to study
the chromatin state changes after infection obtained using
the ChromHMM tool (Ernst and Kellis 2012). We overlapped
chromatin state information with the enhancers from classes
1 and 2. To highlight the key epigenetic changes at en-
hancers, we classified the transition of activities before and
after MTB infection into three groups: activated (from inac-
tive before MTB infection to active after infection), inhibited
(active to inactive), or unchanged (Figure 7 and Figure S9).

We observed that the enhancers from class 1 were signifi-
cantly more activated (P-value ¼ 4:53 1028; Fisher’s
exact test) and less inhibited (P-value, 2:23 10216; Fisher’s
exact test) when compared to class 2 enhancers upon MTB
infection (Figure 7). These results reinforced the potential
role of class 1 enhancers in immune response.

Predicted immune system enhancers showed specific
response activity

Arner et al. (2015) profiled time-courses with CAGE at a high
temporal resolution within a 6-hr time-frame to analyze the
transcriptional dynamics of enhancers and promoters on the
terminal differentiation of stem cells and committed progen-
itors as well as on the response to stimuli for differentiated
primary cells and cell lines. It highlighted distinct dynamic
response patterns of early response activity. We overlaid our
classification of human enhancers and their predicted target
promoters with the response pattern data (Figure 8). Within
the enhancers associated with any response pattern
(n ¼ 4094; 1294 and 2800 from class 1 and class 2, respec-
tively), class 2 enhancerswere enriched (P-value ¼ 3:93 102129;

hyper-geometric test).
We focused on the set of 4094 enhancers classified in the

dynamic response patterns. Class 1 enhancers were found
enriched for down-regulation in “early standard response” and
up-regulation in “late standard response.”Conversely, class 2 en-
hancers appeared enriched for up-regulation in “early standard
response” and for down-regulation in “late standard response.”
These results highlighted opposite activity dynamics between
class 1 and class 2 enhancers. Note that class 2was also enriched
for up-regulation in “late response.” On the other hand, pro-
moters associated to class 1 were enriched in up-regulation of
“rapid long response,” “late response,” and “long response,”
while promoters associated to class 2 enhancers were enriched
in up-regulation of “early response,” in down-regulation of “late
response” and “long response,” and in “late flat response” (Fig-
ure 8b), further reinforcing the existence of different transcrip-
tional responses associated with class 1 and class 2 enhancers.

Figure 5 Nucleosome positioning at enhancers. MNase-seq signal from ENCODE for GM12878 (a) and K562 (b) cell lines at regions of 62000 bp
around enhancer centers from classes 1 (red) and 2 (green).
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Figure 6 Cell-type expression specificities of human enhancers. The cell-type expression specificities (see Materials and Methods for details on cell-type
specificity computation) derived from FANTOM5 CAGE data sets (Andersson et al. 2014) are provided as a heat map for human enhancers in class 1 (a)
and class 2 (b). The colors (see scales) in a and b represent the fraction of expressed enhancers in each cell type (columns) found in each expression
specificity range (rows). The differences in cell-type expression specificities between class 1 and class 2 enhancers are provided as a heat map (c). Positive
(respectively negative) values are represented in red (respectively green) and indicate a higher fraction of class 1 (respectively class 2) enhancers. CAGE,
Cap Analysis of Gene Expression.
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Enhancers from the same class colocalized within
chromatin domains

The organization of the chromatin in cell nuclei is a key feature in
gene expression regulation by forming regulatory interactions
within TADs (Dixon et al. 2016). Genes within the same TAD
tend to be coordinately expressed across cell types and tissues,
and clusters of functionally related genes requiring coregulation
tend to lie within the same TADs (Gibcus and Dekker 2013;
Dixon et al. 2016). Similar to these studies analyzing gene
organization observed in chromatin domains, we focused on
how the two classes of enhancers were organized with respect
to TADs. We compared the distribution of enhancers from the
two classes within TADs (Dixon et al. 2012). Specifically, we
assessed whether individual TADs were biased for containing
more enhancers associated with a specific class than expected
by chance using the Binomial test. The distribution of the cor-
responding P-values was compared to those obtained by ran-
domly assigning class 1 and 2 labels to the enhancers. TADs
were enriched for enhancers from a specific class (Figure 9a),
showing a genomic organization of human enhancers with
respect to chromatin domains.

TADs represent interactions within megabase-sized domains
of chromatin, which can be subdivided into kilobase-sized chro-
matin loops of chromatin interactions (Rao et al. 2014). We
refined our analyses of class-based enhancer colocalization by
focusing on chromosomal loops derived from eight cell lines
(Rao et al. 2014). We found that chromatin loops tended to
contain enhancers from a specific class (Figure 9b and Figure
S10), similar to TADs. Furthermore, class 1 enhancers were
evenly distributed within the chromatin loops whereas en-
hancers from class 2 were observed to be situated close to the
loop boundaries (Figure 9c and Figure S11). This observation is

in agreementwith the enrichment for class 2 enhancers in CTCF
chromatin segments (Figure 4) as chromatin loop boundaries
are known to be enriched for CTCF binding (Rao et al. 2014).

Discussion

We have analyzed the sequence properties of FANTOM5
human enhancers derived from CAGE experiments to reveal

Figure 7 Enhancer activation upon cell infection. Stacked histogram of
the fraction of human enhancers (y-axis) from class 1 and class 2 predicted
to be activated (white) or inhibited (blue). Predictions were obtained using
genomic segments predicted by ChromHMM (Ernst and Kellis 2012) on
human dendritic cells before and after infection with Myobacterium tu-
berculosis (Pacis et al. 2015). Stacked histogram including unchanged
activity is provided in Figure S9.

Figure 8 Expression dynamics of human enhancers and associated pro-
moters. Response patterns (x-axis) of human enhancers (a) and promoters
(b) in time courses were classified by Arner et al. (2015). The percentage (y-
axis) of enhancers (top) and promoters (bottom) from class 1 (red) and class
2 (green) in each response pattern category are provided as histograms in the
two panels. A significant difference between class 1 and class 2 enhancers or
promoters in a specific category is highlighted by “*” or “**” for Bonferroni-
corrected P-value,0:05 or , 0:01; respectively (Fisher’s exact tests).
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that a subset with lower G+C content is more specifically
associatedwith immune response genes. This set of enhancers
tends to colocalize within chromatin domains, exhibits cell-
type specificity, is activated upon infection, and is observed
with specific response activity. In summary, our study of
enhancer DNA sequence composition culminated with the
identification of human enhancers associated with genes
enriched for immune response functions that harbor specific
sequence composition, activity, and genome organization.

While immune response genes were found to be targeted
by enhancers from both classes, the enhancers with lower %
GCweremore specifically targeting these genes (Figure 2). As
these enhancers are active in a more cell-type-specific man-
ner, it suggests that activation of immune response genes in
specific cell types is driven by such enhancers bound by NFkB
and related TFs (Figure 3).

The analyses of sequence properties in regulatory regions,
most prominently CpG islands at promoters, have been key to
understanding gene expression regulation (Bajic et al. 2006;
Hughes and Rando 2009; Tillo and Hughes 2009). We ob-
served that enhancers with a higher G+C content were more
broadly activated than the enhancers with a lower G+C con-
tent. A recent study highlighted that human enhancers with
broad regulatory activity across cellular contexts were
enriched for GC-rich sequence motifs, in line with the fact
that broadly active human TFs bind to GC-rich motifs
(Colbran et al. 2017). The enhancers more specifically asso-
ciated with immune response genes predicted here exhibit a
cell-type-specific expression pattern and have lower %GC. It
remains unclear how and why this set of enhancers has
emerged with such sequence properties. In line with their
lower G+C content, they were associated with (A)n and
(T)n simple repeats and AT-rich low complexity sequences.
They were also strongly enriched in long interspersed nu-
clear elements (LINEs) when compared to other enhancers.

Provided that repetitive elements represent both molecular
parasites and evolutionary drivers (Elbarbary et al. 2016),
these observations may explain, at the sequence level, the
differences observed between the two classes of enhancers.
Besides, they suggest that, similar to Alu elements and en-
dogenous retroviruses (Sasaki et al. 2008; Chuong et al.
2013; Su et al. 2014), LINEs can exert enhancer activities
that are specifically related to the immune response process.
In line with this proposal, expression of LINE-1 has been
shown to trigger inflammatory pathways in systemic autoim-
mune disease (Crow 2010; Mavragani et al. 2016).

Whencomparing thegenomicdistributionof the twosetsof
enhancers, we found that they lie in specific genomic envi-
ronments associated with a distinct local DNA shape pattern.
DNA structural properties were shown to be linked with DNA
flexibility, nucleosome positioning, and gene expression reg-
ulation (Tirosh et al. 2007; Parker et al. 2009; Raveh-Sadka
et al. 2012; Struhl and Segal 2013; Bansal et al. 2014). We
noticed that the DNA shape conformation at enhancers was
similar between the two classes but distinct at their flanking
regions (Figure 1, c–e and Figure S4). The differences in DNA
shape features between the two classes of enhancers might
relate to differences in conformational flexibility. Indeed, we
observed that class 1 enhancer flanking regions harbored in-
creasing MGW, stagger, and opening combined with decreas-
ing HelT close to enhancers compared to class 2 enhancers
(Figure 1, c–e and Figure S4). These characteristics all relate
to distinct flexibility of the DNA, which could provide a topo-
logical explanation for the differences observed between the
two classes.

One simple explanation for the observation that enhancers
from the same class are colocalized would be that enhancers
from the same TADs can be found within the same isochore,
simply because isochores can help define TADs (Jabbari
and Bernardi 2017). For enhancer function, this implies that

Figure 9 Chromosomal organization of class 1 and class 2 enhancers. (a) For each TAD (Dixon et al. 2012), we computed the P-value of the Binomial
test to assess the enrichment for enhancers from a specific class. The plot compares the density (y-axis) of P-values for Binomial tests (x-axis) applied to
classes 1 and 2 enhancers (plain line) and 1000 random assignments of class labels to the enhancers (dashed line). (b) The same analysis as in a was
performed using chromatin loops predicted in lymphoblastoid GM12878 cells (Rao et al. 2014). (c) Density (y-axis) of distances (x-axis) between
enhancers and chromatin loop centers defined using Hi-C data in GM12878 cells (Rao et al. 2014). The distances were normalized by the length of
the loops. Enhancers at the center of the loops were found at distance 0.0 while enhancers at chromatin loops boundaries were found at distance 0.5.
Results associated with class 1 and class 2 enhancers are depicted in red and green, respectively.
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enhancer–promoter associations can be governed by sequence-
level instructions, likeG+C content. This idea is in linewith the
existence of a sequence-encoded enhancer–promoter specific-
ity as unveiled by Zabidi et al. (2015) and Singh et al. (2018),
which is also supported by our findings related to the associa-
tion of enhancers with gene promoters of similar %GC compo-
sition (Figure S7).
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