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Abstract

Gene expression is orchestrated by distinct regulatory regions to ensure a wide variety of

cell types and functions. A challenge is to identify which regulatory regions are active, what

are their associated features and how they work together in each cell type. Several

approaches have tackled this problem by modeling gene expression based on epigenetic

marks, with the ultimate goal of identifying driving regions and associated genomic varia-

tions that are clinically relevant in particular in precision medicine. However, these models

rely on experimental data, which are limited to specific samples (even often to cell lines) and

cannot be generated for all regulators and all patients. In addition, we show here that,

although these approaches are accurate in predicting gene expression, inference of TF

combinations from this type of models is not straightforward. Furthermore these methods

are not designed to capture regulation instructions present at the sequence level, before the

binding of regulators or the opening of the chromatin. Here, we probe sequence-level

instructions for gene expression and develop a method to explain mRNA levels based solely

on nucleotide features. Our method positions nucleotide composition as a critical compo-

nent of gene expression. Moreover, our approach, able to rank regulatory regions according

to their contribution, unveils a strong influence of the gene body sequence, in particular

introns. We further provide evidence that the contribution of nucleotide content can be linked

to co-regulations associated with genome 3D architecture and to associations of genes

within topologically associated domains.

Author summary

Identifying a maximum of DNA determinants implicated in gene regulation will acceler-

ate genetic analyses and precision medicine approaches by identifying key gene features.

In that context decoding the sequence-level instructions for gene regulation is of prime

importance. Among global efforts to achieve this objective, we propose a novel approach

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005921 January 2, 2018 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Bessière C, Taha M, Petitprez F, Vandel J,
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able to explain gene expression in each patient sample using only DNA features. Our

approach, which is as accurate as methods based on epigenetics data, reveals a strong

influence of the nucleotide content of gene body sequences, in particular introns. In con-

trast to canonical regulations mediated by specific DNA motifs, our model unveils a con-

tribution of global nucleotide content notably in co-regulations associated with genome

3D architecture and to associations of genes within topologically associated domains.

Overall our study confirms and takes advantage of the existence of sequence-level instruc-

tions for gene expression, which lie in genomic regions largely underestimated in regula-

tory genomics but which appear to be linked to chromatin architecture.

Introduction

The diversity of cell types and cellular functions is defined by specific patterns of gene expres-

sion. The regulation of gene expression involves a plethora of DNA/RNA-binding proteins

that bind specific motifs present in various DNA/RNA regulatory regions. At the DNA level,

transcription factors (TFs) typically bind 6-8bp-long motifs present in promoter regions,

which are close to transcription start site (TSS). TFs can also bind enhancer regions, which are

distal to TSSs and often interspersed along considerable physical distance through the genome

[1]. The current view is that DNA looping mediated by specific proteins and RNAs places

enhancers in close proximity with target gene promoters (for review [2–5]). High-resolution

chromatin conformation capture (Hi-C) technology identified contiguous genomic regions

with high contact frequencies, referred to as topologically associated domains (TADs) [6].

Within a TAD, enhancers can work with many promoters and, on the other hand, promoters

can contact more than one enhancer [5, 7]. Several large-scale data derived from high-

throughput experiments (such as ChIP-seq [8], SELEX-seq [9], RNAcompete [10]) can be

used to highlight TF/RBP binding preferences and build Position Weight Matrixes (PWMs)

[11]. The human genome is thought to encode *2,000 TFs [12] and>1,500 RBPs [13]. It

follows that gene regulation is achieved primarily by allowing the proper combination to

occur i.e. enabling cell- and/or function-specific regulators (TFs or RBPs) to bind the proper

sequences in the appropriate regulatory regions. In that context, epigenetics clearly plays a

central role as it influences the binding of the regulators and ultimately gene expression [14].

Provided the variety of regulatory mechanisms, deciphering their combination requires math-

ematical/computational methods able to consider all possible combinations [15]. Several

methods have recently been proposed to tackle this problem [16–19]. Although these models

appear very efficient in predicting gene expression and identifying key regulators, they mostly

rely on experimental data (ChIP-seq, methylation, DNase hypersensitivity), which are limited

to specific samples (often to cell lines) and which cannot be generated for all TFs/RBPs and all

cell types. These technological features impede from using this type of approaches in a clinical

context in particular in precision medicine. In addition, we show here that, although these

approaches are accurate, their biological interpretation can be misleading. Finally these meth-

ods are not designed to capture regulation instructions that may lie at the sequence-level

before the binding of regulators or the opening of the chromatin. There is indeed a growing

body of evidence suggesting that the DNA sequence per se contains information able to shape

the epigenome and explain gene expression [20–25]. Several studies have shown that sequence

variations affect histone modifications [21–23]. Specific DNA motifs can be associated with

specific epigenetic marks and the presence of these motifs can predict the epigenome in a

given cell type [24]. Quante and Bird proposed that proteins able to “read” domains of

Probing sequence-level instructions for gene expression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005921 January 2, 2018 2 / 28

I2S joint doctoral fellowship. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1005921


relatively uniform DNA base composition may modulate the epigenome and ultimately gene

expression [20]. In that view, modeling gene expression using only DNA sequences and a set

of predefined DNA/RNA features (without considering experimental data others than expres-

sion data) would be feasible. In line with this proposal, Raghava and Han developed a Support

Vector Machine (SVM)-based method to predict gene expression from amino acid and dipep-

tide composition in Saccharomyces cerevisiae [26].

Here, we built a global regression model per sample to explain the expression of the differ-

ent genes using their nucleotide compositions as predictive variables. The idea beyond our

approach is that the selected variables (defining the model) are specific to each sample. Hence

the expression of a given gene may be predicted by different variables in different samples.

This approach was tested on several independent datasets: 2,053 samples from The Cancer

Genome Atlas (1,512 RNA-sequencing data and 582 microarrays) and 3 ENCODE cell lines

(RNA sequencing). When restricted to DNA features of promoter regions our model showed

accuracy similar to that of two independent methods based on experimental data [17, 19]. We

confirmed the importance of nucleotide composition in predicting gene expression. Moreover

the performance of our approach increases by combining the contribution of different types

of regulatory regions. We thus showed that the gene body (introns, CDS and UTRs), as

opposed to sequences located upstream (promoter) or downstream, had the most significant

contribution in our model. We further provided evidence that the contribution of nucleotide

composition in predicting gene expression is linked to co-regulations associated with genome

architecture and TADs.

Materials and methods

Datasets, sequences and online resources

RNA-seq V2 level 3 processed data were downloaded from the TCGA Data Portal. Our train-

ing data set contained 241 samples randomly chosen from 12 different cancers (20 cancerous

samples for each cancer except 21 for LAML). Our model was further evaluated on an addi-

tional set of 1,270 tumors from 14 cancer types. We also tested our model on 582 TCGA

microarray data. The TCGA barcodes of the samples used in our study have been made avail-

able at http://www.univ-montp3.fr/miap/~lebre/IBCRegulatoryGenomics.

Isoform expression data (.rsem.isoforms.normalized_results files) were downloaded from

the Broad TCGA GDAC (http://gdac.broadinstitute.org) using firehose_get. We collected data

for 73599 isoforms in 225 samples of the 241 initially considered. All the genes and isoforms

not detected (no read) in any of the considered samples were removed from the analyses.

Expression data were log transformed.

All sequences were mapped to the hg38 human genome and the UCSC liftover tool was

used when necessary. Gene TSS positions were extracted from GENCODEv24. UTR and CDS

coordinates were extracted from ENSEMBL Biomart. To assign only one 5UTR sequence to

one gene, we merged all annotated 5UTRs associated with the gene of interest using Bedtools

merge [27] and further concatenated all sequences. The same procedure was used for 3UTRs

and CDSs. Intron sequences are GENCODEv24 genes to which 5UTR, 3UTR and CDS

sequences described above were substracted using Bedtools substract [27]. These sequences

therefore corresponded to constitutive introns. The intron sequences were concatenated per

gene. The downstream flanking region (DFR) was defined as the region spanning 1kb after

GENCODE v24 gene end. Fasta files were generated using UCSC Table Browser or Bedtools

getfasta [27].

TCGA isoform TSSs were retrieved from https://webshare.bioinf.unc.edu/public/

mRNAseq_TCGA/unc_hg19.bed and converted into hg38 coordinates with UCSC liftover.

Probing sequence-level instructions for gene expression
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For other regulatory regions associated to transcript isoforms (UTRs, CDS, introns and DFR),

we used GENCODE v24 annotations.

Nucleotide composition

The nucleotide (n = 4) and dinucleotide (n = 16) percentages were computed from the differ-

ent regulatory sequences where:

percentageðN; sÞ ¼
]N
l

is the percentage of nucleotide N in the regulatory sequence s, with N in {A, C, G, T} and l the

length of sequence s, and

percentageðNpM; sÞ ¼
]NpM
l � 1

is the NpM dinucleotide percentage in the regulatory sequence s, with N and M in {A, C, G, T}

and l the length of sequence s.

Motif scores

Motif scores in core promoters were computed using the method explained in [11] and Posi-

tion Weight Matrix (PWM) available in JASPAR CORE 2016 database [28]. Let w be a motif

and s a nucleic acid sequence. For all nucleotide N in {A, C, G, T}, we denoted by P(N|wj) the

probability of nucleotide N in position j of motif w obtained from the PWM, and by P(N) the

prior probability of nucleotide N in all sequences.

The score of motif w at position i of sequence s is computed as follows:

scoreðw; s; iÞ ¼
Xjwj� 1

j¼0

log
PðsiþjjwjÞ

PðsiþjÞ

with |w| the length of motif w, si+j the nucleotide at position i + j in sequence s, The score of

motif w for sequence s is computed as the maximal score that can be achieved at any position

of s, i.e.:

scoreðw; sÞ ¼ max
l� jwj

i¼0
scoreðw; s; iÞ;

with l the length of sequence s.
Models were also built on sum scores as:

scoreSumðw; sÞ ¼
Xl� jwj

i¼0

scoreðw; s; iÞ;

and further compared to models built on mean scores (S1 Fig). Taking mean or sum scores

per region yielded similar results (Wilcoxon test p-value = 0.68).

DNAshape scores

DNA shape scores were computed using DNAshapeR [29]. Briefly, provided nucleotide

sequences, DNAshapeR uses a sliding pentamer window to derive the structural features corre-

sponding to minor groove width (MGW), helix twist (HelT), propeller twist (ProT) and Roll

from all-atom Monte Carlo simulations [29]. Thus, for each DNA shape, a score is given to

Probing sequence-level instructions for gene expression
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each base of each sequence considered (DU, CORE and DD—see Fig 1). We then computed

the mean of these scores for each sequence providing 12 additional variables per gene.

Enhancers

The coordinates of the enhancers mapped by FANTOM on the hg19 assembly [7] were con-

verted into hg38 using UCSC liftover and further intersected with the different regulatory

regions. We computed the density of enhancers per regulatory region (R) by dividing the sum,

for all genes, of the intersection length of enhancers with gene iðLenhi
Þ by the sum of the lengths

of this regulatory region for all genes:

enhDensityðRÞ ¼
P

i ðLenhi
in RiÞ

P
i lengthðRiÞ

Copy Number Variation (CNV)

Processed data were downloaded from the firehose Broad GDAC (https://gdac.broadinstitute.

org/). We used the genome-wide SNP array data and the segment mean scores. In order to

assign a CNV score to each gene, the coordinates (hg19) of the probes were intersected with

that of GENCODE v19 genes using Bedtools intersect [27] and an overlap of 85% of the gene

total length. The corresponding segment mean value was then assigned to the intersecting

genes. In case no intersection was detected, the gene was assigned a score of 0. We next com-

puted Spearman correlations between genes absolute error (lasso model) and genes absolute

segment mean score for each of the 241 samples of the training set.

Fig 1. Genomic regions considered for gene expression prediction. An illustrative transcript is shown as example.

https://doi.org/10.1371/journal.pcbi.1005921.g001
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Expression quantitative trait loci and single nucleotide polymorphisms

The v6p GTex cis-eQTLs were downloaded from the GTex Portal (http://www.gtexportal.org/

home/). The hg19 cis-eQTL coordinates were converted into hg38 using UCSC liftover and

further intersected with the different regulatory regions. We restricted our analyses to cis-
eQTLs impacting their own host gene. We computed the density of cis-eQTL per regulatory

region (R) by dividing the sum, for all genes, of the number of cis-eQTLs of gene i (eQTLsi)
located in the considered region for gene i (Ri) by the sum of the lengths of this regulatory

region for all genes:

eQTLdensityðRÞ ¼
P

i #ðeQTLsi in RiÞP
i lengthðRiÞ

Likewise we computed the density of SNPs in core promoters and introns by intersecting coor-

dinates of these two regions (liftovered to hg19) with that of SNPs detected on chromosomes

1, 2 and 19 (ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606_b150_GRCh37p13/BED/):

SNPdensityðRÞ ¼
P

i #ðSNPi in RiÞP
i lengthðRiÞ

Methylation

Illumina Infinium Human DNA Methylation 450 level 3 data were downloaded from the

Broad TCGA GDAC (http://gdac.broadinstitute.org) using firehose_get. The coordinates of

the methylation sites (hg18) were converted into hg38 using the UCSC liftover and further

intersected with that of the core promoters (hg38). For each gene, we computed the median of

the beta values of the methylation sites present in the core promoter and further calculated the

median of these values in 21 LAML and 17 READ samples with both RNA-seq and methyla-

tion data. We compared the overall methylation status of the core promoters in LAML and

READ using a wilcoxon test.

Gini coefficient

We used 8,556 GTEx RNA-seq libraries (https://www.gtexportal.org/home/datasets) to com-

pute the Gini coefficient for 16,134 genes on the 16,294 considered in our model. Gini coeffi-

cient measures statistical dispersion and can be used to measure gene ubiquity: value 0

represents genes expressed in all sam- ples while value 1 represents genes expressed in only

one sample. To compute Gini coefficient we used R package ineq. We then computed, for

the 241 samples, Spearman correlation between Gini coefficients and model gene absolute

errors. Similar analyses were performed with 1,897 FANTOM 5 CAGE libraries to compute

the Gini coefficients for 15,904 genes.

Functional enrichment

Gene functional enrichments were computed using the database for annotation, visualization

and integrated discovery (DAVID) [30].

Linear regression with ℓ1-norm penalty (Lasso)

We performed estimation of the linear regression model (1) via the lasso [31]. Given a linear

regression with standardized predictors and centered response values, the lasso solves the

Probing sequence-level instructions for gene expression
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ℓ1-penalized regression problem of finding the vector coefficient β = {βi} in order to minimize

Min jjycðgÞ �
X

i

bix
s
i;gjj

2
þ l

X

i

jbij

 !

;

where yc(g) is the centered gene expression for all gene g, xsi;g is the standardized DNA feature i
for gene g and ∑i |βi| is the ℓ1-norm of the vector coefficient β. Parameter λ is the tuning param-

eter chosen by 10 fold cross validation. The higher the value of λ, the fewer the variables. This

is equivalent to minimizing the sum of squares with a constraint of the form ∑i |βi|� s. Gene

expression predictions are computed using coefficient β estimated with the value of λ that min-

imizes the mean square error. Lasso inference was performed using the function cv.glmnet
from the R package glmnet [32]. The LASSO model was compared to two non parametric

approaches: Regression trees (CART) [33] and Random forest [34]. S1 Table summarizes accu-

racy and computing time of each approach. Regression trees achieved significantly lower accu-

racy than the two other approaches (Wilcox test p-values < 2e−16), while linear model and

random forest yielded similar results (p-value 0.18). Moreover, computing time for linear

model was much lower than that of random forest. These results emphasize the merits of linear

model such as LASSO in their interpretability and efficiency.

Variable stability selection

We used the stability selection method developed by Meinshausen et al. [35], which is a classi-

cal selection method combined with lasso penalization. Consistently selected variables were

identified as follows for each sample. First, the lasso inference is repeated 500 times where, for

each iteration, (i) only 50% of the genes is used (uniformly sampled) and (ii) a random weight

(uniformly sampled in [0.5;1]) is attributed to each predictive variable. Second, a variable is

considered as stable if selected in more than 70% of the iterations, using the method proposed

in [36] to set the value of lasso penalty λ. One of the advantage of this method is that the vari-

able selection frequency is computed globally for all the variables by attributing a random

weight to each variable at each iteration, thus taking into account the dependencies between

the variables. This variable stability selection procedure was implemented using functions

stabpath and stabsel from the R package C060 for glmnetmodels [36].

Regression trees

Regression trees were implemented with the rpart package in R [32]. In order to avoid over-

fitting, trees were pruned based on a criterion chosen by cross validation to minimize mean

square error. The minimum number of genes was set to 100 genes per leaf.

TAD enrichment

We considered TADs mapped in IMR90 cells [6] containing more than 10 genes (373 out of

2243 TADs with average number of genes = 14). The largest TAD had 76 associated genes.

First, for each TAD and for each region considered, the percentage of each nucleotide and

dinucleotide associated to the embedded genes were compared to that of all other genes using

a Kolmogorov-Smirnov (KS) test. For a given dinucleotide (for example CpG), we applied KS

tests to assess whether the CpG frequency distribution in genes in one specific TAD differs

from the distribution in genes in other TADs. Correction for multiple tests was applied using

the False Discovery Rate (FDR) < 0.05 [37] and the R function p.adjust [32]. Second, for

each of the 967 groups of genes (identified by the regression trees, with mean error< mean

error of the 1st quartile), the over-representation of each TAD within each group was tested

Probing sequence-level instructions for gene expression
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using the R hypergeometric test function phyper [32]. Correction for multiple tests was

applied using FDR< 0.05 [37].

Availability of data and materials

The matrices of predicted variables (log transformed RNA seq data) and predictive variables

(nucleotide and dinucleotide percentages, motifs and DNA shape scores computed for all genes

as described above) as well as the TCGA barcodes of the 241 samples used in our study have

been made available at http://www.univ-montp3.fr/miap/~lebre/IBCRegulatoryGenomics.

Results

Mathematical approach to model gene expression

We built a global linear regression model to explain the expression of genes using DNA/RNA

features associated with their regulatory regions (e.g. nucleotide composition, TF motifs, DNA

shapes):

yðgÞ ¼ aþ
X

i

bixi;g þ eðgÞ ð1Þ

where y(g) is the expression of gene g, xi,g is feature i for gene g, e(g) is the residual error associ-

ated with gene g, a is the intercept and bi is the regression coefficient associated with feature i.
The advantage of this approach is that it allows to unveil, into a single model, the most

important regulatory features responsible for the observed gene expression. The relative con-

tribution of each feature can thus be easily assessed. It is important to note that the model is

specific to each sample. Hence the expression of a given gene may be predicted by different

variables depending on the sample. Our computational approach was based on two steps.

First, a linear regression model (1) was trained with a lasso penalty [31] to select sequence fea-

tures relevant for predicting gene expression. Second, the performances of our model was eval-

uated by computing the mean square of the residual errors, and the correlation between the

predicted and the observed expression for all genes. This was done in a 10 fold cross-validation

procedure. Namely, in all experiments hereafter, the set of genes was randomly split in ten

parts. Each part was alternatively used for the test (i.e. for comparing observed and predicted

values) while the remaining genes were used to train the model. This ensures that the model

used to predict the expression of a gene has not been trained with any information relative to

this gene. Our approach was applied to a set of RNA sequencing data from TCGA. We ran-

domly selected 241 gene expression data from 12 cancer types (see http://www.univ-montp3.

fr/miap/~lebre/IBCRegulatoryGenomics for the barcode list). For each dataset (i.e sample),

a regression model was learned and evaluated. See Materials and methods for a complete

description of the data, the construction of the predictor variables and the inference procedure.

We further evaluated our model on 3 independent ENCODE RNA-seq, 1,270 TCGA RNA-seq

and 582 microarrays datasets (see below).

Contribution of the promoter nucleotide composition

We first evaluated the contribution of promoters, which are one of the most important regula-

tory sequences implicated in gene regulation [38]. We extracted DNA sequences encompass-

ing ±2000 bases around all GENCODE v24 TSSs and looked at the percentage of dinucleotides

along the sequences (S2 Fig). Based on these distributions, we segmented the promoter into

three distinct regions: -2000/-500 (referred here to as distal upstream promoter, DU),

-500/+500 (thereafter called core promoter though longer than the core promoter traditionally

Probing sequence-level instructions for gene expression
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considered) and +500/+2000 (distal downstream promoter, DD)(Fig 1). We computed the

nucleotide (n = 4) and dinucleotide (n = 16) relative frequencies in the three distinct regions of

each gene. For each sample, we trained one model using the 20 nucleotide/dinucleotide rela-

tive frequencies from each promoter segment separately, and from each combination of

promoter segments. We observed that the core promoter had the strongest contribution com-

pared to DU and DD (Fig 2A). Considering promoter as one unique sequence spanning

-2000/+2000 around TSS achieved lower model accuracy than combining different promoter

segments (Fig 2A). The highest accuracy was obtained combining all three promoter segments

(Fig 2A).

Promoters are often centered around the 5’ most upstream TSS (i.e. gene start). However

genes can have multiple transcriptional start sites. The median number of alternative TSSs for

the 19,393 genes listed in the TCGA RNA-seq V2 data is 5 and only 2,753 genes harbor a single

TSS (S3 Fig). We therefore evaluated the performance of our model comparing different pro-

moters centered around the first, second, third and last TSS (Fig 2B). In the absence of second

TSS, we used the first TSS and likewise the second TSS in the absence of a third TSS. The last

TSS represents the most downstream TSS in all cases. We found that our model achieved

higher predictive accuracy with the promoters centered around the second TSS (Fig 2B), in

agreement with [16]. As postulated by Cheng et al. [16] in the case of TFs, the nucleotide com-

position around the first TSS may be linked to the recruitment of chromatin remodelers and

thereby prime the second TSS for gene expression. Dedicated experiments would be required

to assess this point.

We noticed that incorporating the number of TSSs associated with each gene drastically

increased the performance of our model (S4 Fig). Multiplying TSSs may represent a genuine

mechanism to control gene expression level. On the other hand this effect may merely be due

to the fact that the more a gene is expressed, the more its different isoforms will be detected

(and hence more TSSs will be annotated). Because the number of known TSSs results from

annotations deduced from experiments, we decided not to include this variable into our final

model.

Contribution of specific features associated with promoters

Provided the importance of CpGs in promoter activity [38], we first compared our model with

a model built only on promoter CpG content. We confirmed that CpG content had an impor-

tant contribution in predicting gene expression (median R = 0.417, Fig 2C). However consid-

ering other dinucleotides achieved better model performances, indicating that dinucleotides

other than CpG contribute to gene regulation. This is in agreement with results obtained by

Nguyen et al., who showed that CpG content is insufficient to encode promoter activity and

that other features might be involved [39].

We integrated TF motifs considering Position Weight Matrix scores computed in the core

promoter and observed a slight but significant increase of the regression performance (median

r = 0.543 with motif scores vs. r = 0.502 without motif scores, Fig 2D). As DNA sequence is

intrinsically linked to three-dimensional local structure of the DNA (DNA shape), we also

computed, for each promoter segment (DU, CORE and DD), the mean scores of the four

DNA shape features provided by DNAshapeR [29] (helix twist, minor groove width, propeller

twist, and Roll), adding 12 variables to the model. Although the difference between models

with and without DNA shapes is also significant, the increase in performance is more modest

than when including TF motif scores (Fig 2D).

Our model suggested that nucleotide composition had a greater contribution in predicting

gene expression compared to TF motifs and DNA shapes. This is in agreement with the

Probing sequence-level instructions for gene expression
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Fig 2. A: Contribution of the promoter segments. The model was built using 20 variables corresponding to the

nucleotide (4) and dinucleotide (16) percentages computed in the CORE promoter (red), DU (green) or DD (yellow).

These variables were then added in different combinations: CORE+DU (pink, 40 variables); CORE+DD (orange, 40

variables); CORE+DU+DD (light blue, 60 variables). Promoter segments were centered around the first most

upstream TSS. For sake of comparison, the model was also built on 20 variables corresponding to the nucleotide and
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findings revealing the influence of the nucleotide environment in TFBS recognition [40]. Note

however that nucleotide composition, TF motifs and DNA shapes may be redundant variables.

Besides, a linear model may not be optimal to efficiently capture the contributions of TF motifs

and/or DNA shapes. The highest performance was achieved by combining nucleotide compo-

sition with TF motifs (Fig 2D). In the following analyses, the model was built on both dinucle-

otide composition and core promoter TF motifs.

Comparison with models based on experimental data

The wealth of TF ChIP-seq, epigenetic and expression data has allowed the development of

methods aimed at predicting gene expression based on differential binding of TFs and epige-

netic marks [16–19]. We sought to compare our approach, which does not necessitate such

cell-specific experimental data, to these methods. We first compared our results to that of Li

et al. who used a regression approach called RACER to predict gene expression on the basis of

experimental data, in particular TF ChIP-seq data and DNA methylation [17]. Note that, with

this model, the contribution of TF regulation in predicting gene expression is higher than that

of DNA methylation [17].

We computed the Spearman correlations between expressions observed in the subsets of

LAMLs studied in [17] and expressions predicted by our model or by RACER (Fig 3A). For

the sake of comparison, we used the RACER model built solely on ChIP-seq data, hereafter

referred to as “ChIP-based model”. RACER performance was assessed using the same cross-

validation procedure we used for our method. Overall our model was as accurate as ChIP-

based model (median correlation r = 0.529 with our model vs. median r = 0.527 with ChIP-

based model (Fig 3A)). We then controlled the biological information retrieved by the two

approaches by randomly permuting, for each gene, the values of the predictive variables (dinu-

cleotide counts/motif scores in our model and ChIP-seq signals in the ChIP-based model).

This creates a situation where the links between the combination of predictive variables and

expression is broken, while preserving the score distribution of the variables associated with

each gene. For example, genes associated with numerous ChIP-seq peaks will also have numer-

ous ChIP-seq peaks in random data. In such situation, a regression model is expected to poorly

perform. Surprisingly, the accuracy of ChIP-based model was not affected by the randomiza-

tion process (median r = 0.517, Fig 3A) while that of our model was severely impaired (median

r = 0.076, Fig 3A). We built another control model using a single predictive variable per gene

corresponding to the maximum value of all predictive variables initially considered. Here

again the ChIP-based model was not affected by this process (median r = 0.520, Fig 3A) while

our model failed to accurately predict gene expression with this type of control variable

(median r = -0.016, Fig 3A).

dinucleotide compositions of the non segmented promoters (-2000/+2000 around the first most upstream TSS)(light

blue). All different models were fitted on 19,393 genes for each of the 241 samples considered. The prediction accuracy

was evaluated in each sample by evaluating the Spearman correlation coefficients between observed and predicted gene

expressions in a cross-validation procedure. The correlations obtained in all samples are shown as violin plots. B:

Prediction accuracy comparing alternative TSSs. The model was built using the 60 nucleotide/dinucleotide

percentages computed in the 3 promoter segments (CORE+DU+DD) centered around 1st, 2nd, 3rd and last TSSs

(from left to right). C: Contribution of CpG. The model was built using the 60 nucleotide/dinucleotide or only the 3

CpG percentages computed in the 3 promoter segments (CORE+DU+DD) centered around the 2nd TSS. D:

Contribution of motifs and local DNA shapes. The model was built using (i) 60 nucleotide/dinucleotide percentages

computed in the 3 promoter segments (CORE+DU+DD) (“dint”, pink),(ii) 471 JASPAR2016 PWM scores computed

in the CORE segment (“motifs”, light blue) and (iii) the 12 DNA shapes corresponding to the 4 known DNAshapes

computed in CORE, DU and DD (“DNAshape”, green). All sequences were centered around the 2nd TSS. These

variables were further added in different combinations to build the models indicated: dint+motifs (531 variables,

green), dint+DNAshapes (32 variables, dark blue), motifs+DNAshapes (483 variables, light green).

https://doi.org/10.1371/journal.pcbi.1005921.g002
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Fig 3. A: Comparison with model integrating TF-binding signals. The model was built using 531 variables

corresponding to the 60 nucleotide/dinucleotide percentages and the 471 motif scores computed in the 3 promoter

segments (CORE, DU, DD) centered around the 2nd TSS (pink). A model built on ChIP-seq data [17] was used for

comparison (green). Both models were fitted on the same gene set (n = 16,298) for 21 LAML samples and assessed by

cross-validation. The correlations obtained with ChIP-based RACER and our model were compared using Wilcoxon

test but no significant difference was observed (p-value = 0.425). The two models were also built on randomized values

of predictive variables (rand) and on the maximum value of all predictive variables (max). B: Comparison with model

integrating open-chromatin signals. The linear model was built using the 531 variables (nucleotide/dinucleotide

percentages and motif scores in CORE, DU and DD) and the expression data obtained in K562, hESC and GM12878

[19]. TEPIC was built as described in [19], within a 3 kb or a 50 kb window around TSSs. The scaled version of TEPIC

Probing sequence-level instructions for gene expression
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ChIP-seq data are probably the best way to measure the activity of a TF because binding of

DNA reflects the output of RNA/protein expression as well as any appropriate post-transla-

tional modifications and subcellular localizations. However this type of data also reflects chro-

matin accessibility (i.e. most TFs bind accessible genomic regions) and TFs tend to form

clusters on regulatory regions [41]. The binding of one TF in the promoter region is therefore

likely accompanied by the binding of others. Hence, rather than inferring the TF combination

responsible for gene expression, linear models based of ChIP-seq data predominantly captures

the quantity of TFs (i.e. the opening of the chromatin) in the promoter region of each gene,

which explains their good accuracy on randomized or maximized variables.

We indeed observed a similar bias in the results obtained by TEPIC [19], a regression

method that predicts gene expression from PWM scores and open-chromatin data. Specifi-

cally, TEPIC computes a TF-affinity score for each gene and each PWM by summing up the

TF affinities in all open-chromatin peaks (DNaseI-seq) within a close (3,000 bp) or large

(50,000 bp) window around TSSs. This scoring takes into account the scores of PWMs in the

open-chromatin peaks but is also influenced by the number of open-chromatin peaks in the

analyzed sequences and the abundance of open-chromatin peaks (“scaled” version). As a

result, genes with many open-chromatin peaks tend to get higher TF-affinity scores than genes

with low number of open-chromatin peaks. We trained linear models on three cell-lines using

either the four TEPIC affinity-scores or our variables and compared the results (Fig 3B). As for

the ChIP-based models, we observed that our model was approximately as accurate as TEPIC

score model, validating our approach with an independent dataset. Applying the random per-

mutations on the TEPIC scores did not significantly impact the accuracy of the approach in

most cases, especially for the scaled versions (Fig 3B). Hence, as for the ChIP-based model, the

TEPIC score model seems to mainly capture the level of chromatin opening rather than the TF

combinations responsible for gene expression. Conversely, our model solely built on DNA

sequence features is not influenced by the chromatin accessibility and thus can yield relevant

combinations of explanatory features (see the randomized control in Fig 3A and 3B). Note

that the non-scaled version of TEPIC did show a loss of accuracy for cell-line H1-hESC (as

well as a moderate loss for K562, but none for GM12878) when randomizing or maximizing

the variables (Fig 3B). This result indicates that, although taking the abundance of open-chro-

matin peaks in the analyzed sequences does increase expression prediction accuracy, it might

generate more irrelevant combinations of explanatory features than non-scaled versions.

Contribution of additional genomic regions

Additional genomic regions were integrated into our model. We first thought to consider

enhancer sequences implicated in transcriptional regulation. We used the enhancer mapping

made by the FANTOM5 project, which identified 38,554 human enhancers across 808 samples

[7]. This mapping uses the CAGE technology, which captures the level of activity for both pro-

moters and enhancers in the same samples. It is then possible to predict the potential target

genes of the enhancers by correlating the activity levels of these regulatory regions over

incorporates the abundance of open-chromatin peaks in the analyzed sequences. All types of TEPIC models were tested

(3kb, 3kb-scaled, 50kb and 50kb-scaled) by cross-validation. In each case, our model was built on the set of genes

considered by TEPIC. TEPIC uses 12 conditions making hard to compute Wilcoxon tests. A direct comparison showed

that, in “normal” conditions (first column of each panel), our model and TEPIC give overall very similar results (our

model being as accurate as TEPIC in 2 conditions and slightly better in 5 out of the 10 remaining conditions). Models

were further built on randomized values of predictive variables (rand) and on the maximum value of all predictive

variables (max). Overall, absence of effect of the randomization procedure suggests that RACER and TEPIC mainly

capture the level of chromatin opening rather than the TF combinations responsible for gene expression.

https://doi.org/10.1371/journal.pcbi.1005921.g003
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hundreds of human samples [7]. However FANTOM5 enhancers are only assigned to 11,359

genes from the TCGA data, which correspond to the most expressed genes across different

cancers (S5 Fig). Provided that the detection of enhancers relies on their activity, it is expected

that enhancers are better characterized for the most frequently expressed genes. Because con-

sidering only the genes with annotated enhancers would considerably reduce the number of

genes and including enhancers features only when available would introduce a strong bias in

the performance of our model, we decided not to include these regulatory regions.

Second we analyzed the contribution of regions defined at the RNA level, namely 5’UTR,

CDS, 3’UTR and introns, which can be responsible for post-transcriptional regulations [13, 17,

26, 42–50] (Fig 1). For all genes, we extracted all annotated 5’UTRs, 3’UTRs and CDSs, which

were further merged and concatenated to a single 5’UTR, a single CDS, and a single 3’UTR per

gene. Introns were defined as the remaining sequence (Fig 1). We also tested the potential con-

tribution of the 1kb region located downstream the gene end, called thereafter Downstream

Flanking Region (DFR, Fig 1). Our rationale was based on reports showing the presence of

transient RNA downstream of polyadenylation sites [51], the potential presence of enhancers

[7] and the existence of 5’ to 3’ gene looping [52].

We used a forward selection procedure by adding one region at a time: (i) all regions were

tested separately and the region leading to the highest Spearman correlation between observed

and predicted expression was selected as the ‘first’ seed region, (ii) each region not already in

the model was added separately and the region yielding the best correlation was selected (‘sec-

ond region’), (iii) the procedure was repeated till all regions were included in the model. The

correlations computed in a cross-validation procedure at each steps are indicated in S2 Table.

As shown in Fig 4, the nucleotide composition of intronic sequences had the strongest contri-

bution in the accuracy of our model, followed by UTRs (5’ then 3’) and CDS (Fig 4). The

Fig 4. Contribution of additional genomic regions. Genomic regions were ranked according to their contribution in predicting gene

expression. First, all regions were tested separately. Introns yielded the highest Spearman correlation between observed and predicted

expressions (in a cross-validation procedure) and was selected as the ‘first’ seed region. Second, each region not already in the model

was added separately. 5’UTR in association with introns yielded the best correlation and was therefore selected as the ‘second’ region.

Third, the procedure was repeated till all regions were included in the model. The contribution of each region is then visualized

starting from the most important (left) to the less important (right). Note that the distance between the second TSS and the first ATG

is> 2000 bp for only 189 genes implying that 5’UTR and DD regions overlap. The correlations computed at each steps are indicated in

(S2 Table). ns, non significant.

https://doi.org/10.1371/journal.pcbi.1005921.g004
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nucleotide composition of core promoter moderately increased the prediction accuracy. In

contrast the composition of regions flanking core promoter (DU and DD, Fig 1) as well as

regions located downstream the end of gene (DFR, Fig 1) did not significantly improve the

predictions of our model. Note that combining all regions improved the performance of our

model compared to promoter alone (compare Figs 2B and 4).

We compared models built on ssDNA and dsDNA, and ssDNA-based models yielded bet-

ter accuracy S6 Fig. We also compared models built on percentages of nucleotides (n = 4),

dinucleotides (n = 16) and nucleotides+dinucleotides (n = 20). As shown S7A Fig, dinucleo-

tides provided stronger prediction accuracy than nucleotides and the best accuracy was

obtained combining both nucleotides and dinucleotides. We also built a model on trinucleo-

tide percentage (n = 64) (S7A Fig). This model did yield better results than model built on

nucleotide+dinucleotide. However, the correlation increase was not as important as that

observed when adding dinucleotides to nucleotides. Besides, the model built on trinucleotides

involves more variables and is computationally demanding. We compared models built on

nucleotides+dinucleotides adding individually trinucleotide percentages of each region (i.e. 8

models built on nucleotides+dinucleotides in all regions + trinucleotides in one specific

region) (S7B Fig). This analysis revealed that the correlation increase observed when incorpo-

rating trinucleotides was mostly due to the contribution of trinucleotides computed in introns,

reinforcing our conclusions regarding the importance of sequence-level instructions located in

this region.

Because RNA-associated regions (introns, UTRs, CDSs) had greater contribution to the

prediction accuracy compared to DNA regions (promoters, DFR), we compared the accuracy

of our model in predicting gene vs. transcript expression. We retrieved the normalized results

for gene expression (RNAseqV2 rsem.genes.normalized_results) and the matched normalized

expression signal of individual isoforms (RNAseqV2 rsem.isoforms.normalized_results) for

225 TCGA samples. Accordingly, we generated a set a predictive variables specific to each iso-

form (see Material and methods). We found that models built on isoforms are less accurate

than models built on genes (median r = 0.35, S8 Fig and (S3 Table)). Focusing on the broad

nucleotide composition may not be optimal to model isoform expression and to differentiate

expression of one isoform from another. Yet another simple explanation could be that recon-

structing and quantifying full-length mRNA transcripts is a difficult task, and no satisfying

solution exists for now [53]. Consequently isoform as opposed to gene expression is more diffi-

cult to measure and thus to predict.

Additional validation of the model

In the above sections, our complete model, built on 160 variables corresponding to 4 nucleo-

tide and 16 dinucleotide rates in 8 distinct regions (Fig 1), was trained with a data set contain-

ing 241 RNA-seq samples randomly chosen from 12 different cancers, and on 3 independent

ENCODE RNA-seq datasets (see TEPIC comparison). We further evaluated our approach

using two independent additional datasets: (a) a set of 1,270 RNA-seq samples collected from

14 cancer types and (b) a set of 582 microarray data. Overall, the RNA-seq and the microarray

samples were collected from respectively 109 and 41 source sites and sequenced in 3 analysis

centers. Similar accuracy was observed in all datasets (S9 and S10 Figs). Note that the correla-

tions computed with microarray data were lower than that computed with RNA-seq data but

involved lower number of genes (9,791 genes in microarrays vs. 16,294 in RNA-seq). For sake

of comparison, we restricted RNA-seq data to the 9,791 microarray genes and we observed

similar correlation (S10 Fig). Because our model was built on human reference genome, we

also have computed the Spearman correlations between absolute values of CNV segment
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mean scores and model prediction errors calculated for each gene in 241 samples correspond-

ing to 12 cancer types. The median correlation was -0.014, arguing against the model perfor-

mance being related to CNV-density (S11 Fig).

Selecting DNA features related to gene expression

We sought the main DNA features related to gene expression. The complete model built on all

8 regions (160 variables) selected * 129 predictive variables per sample. We used the stability

selection algorithm developed by Meinshausen et al. [35] to identify the variables that are con-

sistently selected after data subsampling (see Materials and methods for a complete description

of the procedure). This procedure selected a median of * 16 variables per sample. The barplot

in Fig 5A shows, for each variable, the proportion of samples in which the variable is selected

with high consistency (> 70% of the subsets).

We next determined whether stable variables exert a positive (activating) or a negative

(inhibiting) effect on gene expression. For each sample, we fitted a linear regression model pre-

dicting gene expression using only the standardized variables that are stable for this sample.

The activating/inhibiting effect of a variable is then indicated by the sign of its regression coef-

ficient: < 0 for a negative effect and> 0 for a positive effect. The outcome of these analyses for

all variables and all samples is shown Fig 5B. With the noticeable exception of CpG in the core

promoter, all stable variables had an invariable positive (e.g. GpT in introns) or negative (e.g.

CpA in DD and in 5UTR) contribution in gene expression prediction in all samples. In con-

trast, CpG in the core promoter had an alternating effect being positive in LAML and LGG for

instance while negative in READ. It is also the only variable with a regression coefficient close

to 0 (absolute value of median = 0.1, see S12 Fig), providing a partial explanation for the

observed changes. As CpG methylation inhibits gene expression [38], we also investigated

potential differences in core promoter methylation in LAML (positive contribution of

CpG_CORE) and READ (negative contribution of CpG_CORE). We used the Illumina Infi-

nium Human DNA Methylation 450 made available by TCGA and focused on the estimated

methylation level (beta values) of the sites intersecting with the core promoter. We noticed

that core promoters in LAML were overall more methylated (median = 0.85) than in READ

(median = 0.69, wilcoxon test p-value < 2.2e-16), opposite to the sign of CpG coefficient

in LAML (positive contribution of CpG_CORE) and READ (negative contribution of

CpG_CORE). This argued against a contribution of methylation in the alternating effect of

CpG_CORE.

We observed that the accuracy of our model varied between cancer types (S9 Fig). In order

to characterize well predicted genes in each sample, we used a regression tree [54] to classify

genes according to the prediction accuracy of our model (i.e. absolute error). The nucleotide

and dinucleotide compositions of the various considered regions were used as classifiers.

This approach identified groups of genes with similar (di)nucleotide composition in the regu-

latory regions considered and for which our model showed similar accuracy (S13 Fig). Implic-

itly, it identified the variables associated with a better or a poorer prediction. We applied this

approach to the 241 linear models. The number of groups built by a regression tree differs

from one sample to another (average number = 14). The resulting 3,680 groups can be visual-

ized in the heatmap depicted in Fig 6, wherein each column represents a sample and each line

corresponds to a group of genes identified by a regression tree. This analysis showed that our

model is not equally accurate in predicting the expression of all genes but mainly fits certain

classes of genes (bottom rows of the heatmap, Fig 6) with specific genomic features (S13 Fig).

Note that the groups well predicted in all cancers presumably correspond to highly and ubiqui-

tously expressed housekeeping genes: groups with low prediction error in all samples and
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cancer types (see S13 Fig for an example group of 996 genes identified by a regression tree

learned in one PRAD sample) are functionally enriched for general and widespread biological

processes (S4 Table). In contrast, groups well predicted in only certain cancers were associated

to specific biological function. For instance, a regression tree learned on one PAAD sample

identified a group of 1,531 genes, which has low prediction error in LGG and PAAD samples

but high error in LAML, LIHC and DLBC samples (Fig 6 and S13 Fig). Functional annotation

of this group showed that, in contrast to the group described above (S13 Fig and S4 Table), this

group is also linked to specific biological processes (S5 Table).

Fig 5. A: Consistently selected variables among 12 types of cancer. For each variable, the fraction of samples in which the variable is

considered as stable (i. e. selected in more than 70% of the subsets after subsampling) is shown. Each color refers to a specific type of cancer.

Only variables consistently selected in at least one sample are shown (out of the 160 variables). See Materials and methods for stable variable

selection procedure and cancer acronyms. B: Biological effect of the stable variables. For each of the 241 samples (columns), a linear model

was fitted using the variables (rows) stable for this sample only. The sign of the contribution of each variable in each sample is represented as

follows: red for positive contribution, dark blue for negative contribution and sky blue refers to variables not selected (i.e. not stably selected

for the considered sample). Only the variables stable in at least one sample are represented. Cancers and samples from the same cancer types

are ranked by decreasing mean error of the linear model.

https://doi.org/10.1371/journal.pcbi.1005921.g005
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We further computed Gini coefficient for 16,134 genes using 8,556 GTEx libraries [55]. Gini

coefficient measures statistical dispersion which can be used to measure gene expression ubiq-

uity: value 0 represents genes expressed in all samples, while value 1 represents genes expressed

in only one sample. We observed that the correlations obtained between Gini coefficient and

model errors in each TCGA sample ranged from 0.22 to 0.36. We also compared model errors

associated to first and last quartiles of the Gini coefficient distribution using a Wilcoxon test for

each of the 241 samples. The test was invariably significant with maximum p-value = 2.881e−7.

Likewise analyses were performed with 1,897 FANTOM CAGE libraries [56] considering

15,904 genes. In that case, correlation between models errors and Gini coefficients ranged from

0.25 to 0.4. Overall these analyses suggested that our model better predicts expression of highly

and ubiquitously expressed genes. We do not exclude that, when predicting tissue-specific

genes, ChIP-seq data collected from the same tissue may add explanatory power to the

sequence model. Note, however, that the model performances vary between cancer and cell

types implying that part of cell-specific genes are also well predicted by the model (S9 Fig).

Relationships between selected nucleotide composition and genome

architecture

We probed the regulatory activities of the selected regions. We first determined whether

introns contained specific regulatory sequence code by assessing the presence of cis expression

Fig 6. Gene classification according to prediction accuracy. Columns represent the various samples gathered by cancer type. Samples

from the same cancer type are ranked by decreasing mean squared prediction error. Lines represent the 3,680 groups of gene obtained with

the regression trees (one tree for each of the 241 samples) ranked by decreasing mean squared prediction error. Groups gathering the top

25% well predicted genes (error<* 1.77) are indicated in red and light blue.

https://doi.org/10.1371/journal.pcbi.1005921.g006
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quantitative trait loci (cis-eQTLs). Zhou et al. indeed showed that the effect of eQTL SNPs can

be predicted from a regulatory sequence code learned from genomic sequences [25]. These

findings also implied that cis-eQTLs preferentially affect DNA sequences at precise locations

(e.g. TF binding sites) rather than global nucleotide composition (i.e. nucleotide/dinucleotide

percentages used as variables in our model). We used the v6p GTEx release to compute the

average frequencies of cis-eQTLs present in the considered genomic regions and directly linked

to their host genes (S6 Table). We noticed that introns contained the smallest density of cis-
eQTLs (10 times less than any other regions), while containing comparable amount of SNPs

(S7 Table). This result argued against the presence of a regulatory sequence code similar to that

observed in promoters for instance [25], despite the presence of enhancers (S8 Table. These

results rather unveiled the existence of another layer of intron-mediated regulation, which

involves global nucleotide compositions of larger DNA regions. We then asked whether the

groups of genes identified by the regression trees (Fig 6) correspond to specific TADs. Genes

within the same TAD tend to be coordinately expressed [57, 58]. TADs with similar chromatin

states tend to associate to form two genomic compartments called A and B: A contains tran-

scriptionally active regions while B corresponds to transcriptionally inactive regions [59]. The

driving forces behind this compartmentalization and the transitions between compartments

observed in different cell types are not fully understood, but chromatin composition and tran-

scription are supposed to play key roles [5]. Jabbari and Bernardi showed that nucleotide com-

position along the genome (notably isochores) can help define TADs [60]. As intronic

sequences represent * 50% of the human genome (1,512,685,844 bp out of 3,137,161,264

according to ENSEMBL merged intron coordinates), the nucleotide composition of introns

likely resemble that of neighbor genes and more globally that of the corresponding TAD. We

used the 373 TADs containing more than 10 genes mapped in IMR90 cells [6]. For each TAD

and each (di)nucleotide, we used a Kolmogorov-Smirnov test to compare the (di)nucleotide

distribution of the embedded genes with that of all other genes. We used a Benjamini-Hoch-

berg multiple testing correction to control the False Discovery Rate (FDR), which was fixed at

0.05 (see Materials and methods section). We found that 324 TADs out of 373 (*87%) are

characterized by at least one specific nucleotide signature (Fig 7A). In addition, our results

clearly showed the existence of distinct classes of TADs related to GC content (GC-rich, GC-

poor and intermediate GC content) (Fig 7A), in agreement with [60]. We next considered the

967 groups of genes defined in Fig 6 whose expression is accurately predicted by our model

(i.e. groups with mean error< mean error of the 1st quartile). We thus focused our analyses on

genes for which we did learn some regulatory features. We evaluated the enrichment for spe-

cific TADs in each group (considering only TADs containing more than 10 genes) using an

hypergeometric test (Fig 7B). We found that 60% of these groups were enriched for at least one

TAD (p-value < 0.05). Hence, several groups of genes identified by the regression trees (Fig 6)

do correspond to specific TADs (Fig 7B). We concluded that our model, primarily based on

intronic sequences, select gene nucleotide compositions that better distinguish active TADs.

Discussion

In this study, we corroborate the hypothesis that DNA sequence contains information able to

explain gene expression [20–25]. We built a global regression model to predict, in any given

sample, the expression of the different genes using only nucleotide compositions as predictive

variables. Overall our model provided a framework to study gene regulation, in particular the

influence of regulatory regions and their associated nucleotide composition.

A surprising result of our study is that sequence-level information is highly predictive of

gene expression and in some occasions comparable to reference ChIP-seq data alone [17, 19].
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Fig 7. A: Nucleotide compositions of resident genes distinguish TADs. For each TAD and for each region considered, the

percentage of each nucleotide and dinucleotide associated to the embedded genes were compared to that of all other genes

using a Kolmogorov-Smirnov test. Red indicates FDR-corrected p-value� 0.05 and yellow FDR-corrected p-value< 0.05.

TAD clustering was made using this binary information. Only TADs with at least one p-value< 0.05 are shown (i.e. 87% of

the TADs containing at least 10 genes). y-axis from top to bottom: G_INTR, GpC_INTR, CpC_INTR, CpC_3UTR,
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The similar accuracy of models built on real and randomly permuted experimental data indi-

cated that, though the experimental data are biologically relevant, their interpretation through

a linear model, in particular inference of TF combinations, is not straightforward as randomi-

zation of experimental data did not show the expected loss of accuracy (Fig 3). An interesting

perspective would be to devise a strategy to infer TF combinations from experimental data

without being influenced by the opening of the chromatin.

The accuracy of our model confirmed that DNA sequence per se and basic information like

dinucleotide frequencies have very high predictive power. It remains to determine the exact

nature of these sequence-level instructions. Interestingly, nucleotide environment contributes

to prediction of TF binding sites and motifs bound by a TF have a unique sequence environ-

ment that resembles the motif itself [40]. Hence, the potential of the nucleotide content to pre-

dict gene expression may be related to the presence of regulatory motifs and TFBSs. However,

we showed that the gene body (introns, CDS and UTRs), as opposed to sequences located

upstream (promoter) or downstream (DFR), had the most significant contribution in our

model. Moreover, cis-eQTL frequencies argue against the presence of a regulatory sequence

code in introns similar to that observed in promoters, suggesting the existence of another layer

of regulation implicating the nucleotide composition of large DNA regions.

Gene nucleotide compositions vary across the genome and can even help define TAD

boundaries [60]. In line with [60], we showed that genes located within the same TAD share

similar nucleotide compositions, which provides a nucleotide signature for their TADs (Fig

7A). Our model aimed at predicting gene expression, and therefore intimately linked to TAD

compartmentalization, appeared to capture these signatures. Several studies have already dem-

onstrated the existence of sequence-level instructions able to determine genomic interactions.

Using an SVM-based approach, Nikumbh et al demonstrated that sequence features can deter-

mine long-range chromosomal interactions [61]. Similar results were obtained by Singh et al.
using deep learning-based models [62]. Using biophysical approaches, Kornyshev et al.
showed that sequence homology influences physical attractive forces between DNA fragments

[63]. It would be interesting to determine whether the nucleotide signatures identified by our

model are directly implicated in DNA folding and 3D genome architecture.

Finally, although sequence-level instructions are—almost—identical in all cells of an indi-

vidual, their usage must be cell-type specific to allow proper A/B compartimentalization of

TADs, gene expression and ultimately diversity of cell functions. At this stage, the mechanisms

driving this cell-type specific selection of nucleotide compositions remain to be characterized.

Supporting information

S1 Fig. Comparison of models built on maximum or sum PWM motif scores. The model

was built (i) using 60 nucleotide/dinucleotide percentages computed in the 3 promoter

GpC_3UTR, G_3UTR, GpC_CDS, CpC_CDS, G_CDS, G_DFR, CpC_DFR, GpC_DFR, CpG_INTR, CpG_3UTR, CpG_CDS,

CpG_DFR, G_DU, GpC_DD, CpG, DU, CpG_DD, GpC_DU, CpC_DU, CpC_DD, G_DD, GpC_5UTR, CpG_5UTR,

G_5UTR, GpC_CORE, CpG_CORE, CpC_CORE, G_CORE, CpC_5UTR, CpT_3UTR, CpT_CDS, CpT_INTR, ApT_INTR,

TpA_INTR, A_INTR, ApA_INTR, TpA_3UTR, ApT_3UTR, A_3UTR, ApA_3UTR, ApA_CDS, A_CDS, ApT_CDS,

TpA_CDS, A_DD, ApA_DD, ApT_DD, TpA_DD, TpA_DU, ApT_DU, ApA_DU, A_DU, TpA_DFR, ApT_DFR, A_DFR,

ApA_DFR, ApA_CORE, A_CORE, ApT_CORE, TpA_CORE, ApA_5UTR, ApT_5UTR, A_5UTR, TpA_5UTR, ApC_DFR,

ApC_DD, ApC_DU, TpC_DU, TpC_DFR, ApC_CORE, CpA_DU, CpA_DFR, CpA_CDS, ApC_CDS, ApC_3UTR,

TpC_CDS, TpC_CORE, CpT_5UTR, TpC_5UTR, CpT_CORE, TpC_DD, CpA_CORE, ApC_5UTR, CpA_5UTR,

ApC_INTR, CpA_DD, CpT_DFR, CpT_DD, CpT_DU, TpC_3UTR, TpC_INTR, CpA_INTR, CpA_3UTR. B: TAD

enrichment within groups of genes whose expression is accurately predicted by our model. The enrichment for each TAD

(containing more than 10 genes) in each gene group accurately predicted by our model (i.e. groups with mean error< mean

errors of the 1st quartile) was evaluated using an hypergeometric test. The fraction of groups with enriched TADs (p-

value< 0.05) is represented.

https://doi.org/10.1371/journal.pcbi.1005921.g007
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segments (CORE+DU+DD) and 471 JASPAR2016 PWM maximum scores computed in the

CORE segment (pink) or (ii) using 60 nucleotide/dinucleotide percentages computed in the 3

promoter segments (CORE+DU+DD) and 471 JASPAR2016 PWM sum scores computed in

the CORE segment (green). All sequences were centered around the 2nd TSS and the 2 models

were fitted on 16,294 genes for each of the 241 samples.

(PDF)

S2 Fig. Dinucleotide local distribution around GENCODEv24 TSSs. Dinucleotide percent-

ages (y-axis) along 140,604 DNA regions centered around GENCODE v24 TSSs ±2000 bp (the

distance to TSS is shown in the x-axis). Dinucleotide combinations are represented as first

nucleotide on left and second nucleotide on top. The promoter segmentation used in this

study (Fig 1) is indicated with vertical dashed lines at -500 bp and 500 bp from the TSS.

(PDF)

S3 Fig. Number of TSSs by gene. We considered 19,393 TCGA genes listed in TCGA and the

TSSs annotated by GENCODE v24.

(PDF)

S4 Fig. Contribution in the model of the TSS number. The model is built using 20 variables

corresponding to the nucleotide (4) and dinucleotide (16) percentages computed in the CORE

promoter (red), DU (green) or DD (yellow) centered around the second TSS as predictive vari-

ables (green). Linear models are also built on the number of isoforms (dark pink) and the

number of TSSs (dark blue). Finally models are built using the combinations of variables indi-

cated. All different models were fitted on 19,393 genes for each of the 241 samples considered.

The prediction accuracy was evaluated in each sample by evaluating the Spearman correlation

coefficients between observed and predicted gene expressions. The correlations obtained in all

samples are shown as violin plots. These two last plots underscored the importance of these

two variables in predicting gene expression.

(PDF)

S5 Fig. Gene expression distribution and FANTOM5 enhancer association. The 19,393

genes listed in one LAML sample (TCGA.AB.2939.03A.01T.0740.13_LAML) (pink) and a sub-

set of 11,359 genes with assigned FANTOM enhancers (green) were considered. The median

expression of genes with assigned enhancers is greater than that of all genes (wilcoxon test

p-value < 2.2e-16)

(PDF)

S6 Fig. Accuracies of models built on dsDNA or ssDNA. A: Models were built using nucleo-

tide and dinucleotide percentages computed on dsDNA (2 nucleotides + 8 dinucleotides;

green violin) or on ssDNA (4 nucleotides + 16 dinucleotides; purple violin) in all the regula-

tory regions (CORE, DU, DD, 5UTR, CDS, 3UTR, INTR, DFR). The 2 models were fitted on

16,294 genes for each of the 241 samples. The prediction accuracy was evaluated in each sam-

ple by evaluating the Spearman correlation coefficients. B: Same analyses focusing on each of

the indicated regions.

(PDF)

S7 Fig. Model accuracy with different set of nucleotide predictive variables. A: Models were

built using different set of variables including nucleotide (4 x 8 regions), dinucleotide (16 x 8

regions) and/or trinucleotide (64 x 8 regions) percentages computed in all the regulatory

regions (CORE, DU, DD, 5UTR, CDS, 3UTR, INTR, DFR). All different models were fitted on

16,280 genes for each of the 241 samples considered. The prediction accuracy was evaluated in

each sample by evaluating the Spearman correlation coefficients. B: Models were built using
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nucleotide (4 x 8 regions) and dinucleotide (16 x 8 regions) percentages computed in all the

regulatory regions and trinucleotide (64) percentages computed in each of the indicated region

separately.

(PDF)

S8 Fig. Forward selection procedure with models built on isoform expressions. The proce-

dure is identical to that described in Fig 4 but models were built on isoform-specific variables

and correlations were computed between observed and predicted isoform expression, not

gene expression.

(PDF)

S9 Fig. Model accuracy in different cancer types. The model with 160 variables (20 (di)nucle-

otide rates in 8 regions) was built on 16,294 genes in 241 samples corresponding to the initial

training set corresponding to 12 cancer types (A) and in an additional set of 1,270 samples cor-

responding to 14 different cancer types (B). The prediction accuracy was evaluated in each

sample by evaluating the Spearman correlation coefficients between observed and predicted

gene expressions. The correlations obtained in all samples of each data sets are shown as violin

plots in A (training set) and B (additional set). The color code indicates the cancer types. The

horizontal dashed lines indicates the median correlation (A, 0.582; B, 0.577).

(PDF)

S10 Fig. Comparison on models built on RNA-seq or microarray data. The model with 160

variables (20 (di)nucleotide rates in 8 regions) was built on 9,791 genes in 582 samples with

matched RNA-seq and microarray data. The prediction accuracy was evaluated in each sample

by evaluating the Spearman correlation coefficients between observed and predicted gene

expressions. The correlations obtained in all samples with RNA-seq- or microarray-built mod-

els are shown as violin plots.

(PDF)

S11 Fig. Spearman correlations between CNV segment mean score and model prediction

error. CNV absolute segment mean scores were computed for each as explained in Materials

and Methods section. Model prediction absolute error for each gene are given by our predic-

tive model using nucleotide and dinuclotide percentages computed in all the regulatory

regions. Models were fitted on 16,294 genes for each of the 234 on 241 samples having CNV

TCGA data available. The median correlation for the 234 samples is -0.014.

(PDF)

S12 Fig. Absolute values of the regression coefficients. A linear regression model was built,

for each sample, on standardized stable variables only. The boxplots show absolute values of

the corresponding coefficients in all samples for each variable considered. Color code as in Fig

5. CpG in the core promoter is highlighted in white. Purple line represents the median of

CpG_CORE coefficients.

(PDF)

S13 Fig. Example of regression trees learned on two linear models. A: Regression tree lead-

ing to a group of genes well predicted in all samples. This tree has been learned on the sam-

ple TCGA.FC.A5OB.01A.11R.A29R.07_PRAD using all nucleotide composition in all regions.

The red path defines a group of 996 genes which has low Lasso error in all samples and cancer

types. This group was used for functional annotation (S4 Table). B: Regression tree leading to

a group of genes well predicted in LGG and PPAD samples. This tree has been learned on

the sample TCGA.IB.7646.01A.11R.2156.07_PAAD using all nucleotide composition in all
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regions. The red path defines a group of 1,531 genes which has low Lasso error in LGG and

PAAD samples but high error in LAML, LIHC and DLBC samples. This group was used for

functional annotation (S5 Table).

(PDF)

S1 Table. Model comparison. Each model is fitted for each tumor, using all the variables over

all regions (160 variables among 8 regulatory regions). First and second columns are median

correlation and mean square error over all the tumors. The third column represents mean

computing time per tumor (in minutes) on a standard laptop.

(PDF)

S2 Table. Contributions of additional genomic regions. Genomic regions were ranked

according to their contribution in predicting gene expression. First, all regions were tested sep-

arately. Introns yielded the highest Spearman correlation between observed and predicted

expressions and was selected as the ‘first’ seed region. Second, each region not already in the

model was added separately. 5UTR in association with introns yielded the best correlation and

was therefore selected as the ‘second’ region. Third, the procedure was repeated till all regions

were included in the model. The contribution of each region is then visualized starting from

the most important (left) to the less important (right). The correlations computed at each steps

are indicated.

(PDF)

S3 Table. Correlations between observed and predicted isoform expression. The procedure

is identical to that described in S2 Table but models were built on isoform-specific variables

and correlations were computed between observed and predicted isoform expression, not

gene expression.

(PDF)

S4 Table. Functional enrichment of a group of genes well predicted in all samples. The

group of 996 genes is obtained by fitting a regression tree on the sample TCGA.FC.

A5OB.01A.11R.A29R.07_PRAD using all the nucleotide composition in all regions. These

genes are well predicted (mean error< 1st quartile) for all samples of different type cancers.

This group of genes was further annotated using the DAVID functional annotation tool. Only

the top 5 biological processes indicated by DAVID is shown. The GO term yielded by this

analysis corresponded to general and widespread biological processes indicating that these

genes likely corresponded to housekeeping genes.

(PDF)

S5 Table. Functional enrichment of a group of genes well predicted in LGG and PAAD.

The group of 1,531 genes is obtained by fitting a regression tree on the sample TCGA.

IB.7646.01A.11R.2156.07_PAAD using all the nucleotide composition in all regions. These

genes are well predicted (mean error< 1st quartile) for all LGG and PAAD samples but not

that of LAML, DBLC and LIHC. This group of genes was further annotated using the DAVID

functional annotation tool. Only the top 5 biological processes indicated by DAVID is shown.

The GO term “Nervous system development” indicates that these genes can be involved in spe-

cific biological processes.

(PDF)

S6 Table. Frequencies of cis-eQTLs in the genomic regions considered. We computed the

density of cis-eQTL per regulatory region by dividing the sum of cis-eQTLs intersecting with

the region considered for all genes by the sum of the lengths of the same regulatory region of
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all genes. see Material and methods for details.

(PDF)

S7 Table. Frequencies of SNPs in CORE and INTRON regions. We computed the density of

SNPs per regulatory region by dividing the sum of SNPs intersecting with the region consid-

ered for all genes by the sum of the lengths of the same regulatory region of all genes. We only

considered SNPs detected on chromosomes 1, 2 and 19. see Material and methods for details.

(PDF)

S8 Table. Intersection between enhancers and the genomic regions considered. We com-

puted the density of enhancers per regulatory region by dividing the total length of the inter-

section between the enhancers and the region considered for all genes by the sum of the

lengths of the same regulatory region of all genes. see Material and methods for details.

(PDF)
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