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BSTRACT 

onitoring transcription in living cells gives access 

o the dynamics of this complex fundamental pro- 
ess. It reveals that transcription is discontinuous, 
hereby active periods (bursts) are separated by one 

r several types of inactive periods of distinct life- 
imes. Ho we ver, decoding temporal fluctuations aris- 
ng from live imaging and inferring the distinct tran- 
criptional steps eliciting them is a challenge. We 

resent BurstDECONV, a novel statistical inference 

ethod that deconvolves signal traces into individ- 
al transcription initiation events. We use the dis- 
ribution of waiting times between successive poly- 
erase initiation events to identify mechanistic fea- 

ures of transcription such as the number of rate- 
imiting steps and their kinetics. Comparison of our 

ethod to alternative methods emphasizes its ad- 
antages in terms of precision and flexibility. Unique 

 eatures suc h as the direct determination of the num- 
er of promoter states and the simultaneous analy- 
is of several potential transcription models make 

urstDECONV an ideal analytic framework for live 

ell transcription imaging experiments. Using sim- 
lated realistic data, we found that our method is 

 ob ust with regar ds to noise or suboptimal experi- 
ental designs. To show its generality, we applied it 

o different biological contexts such as Drosophila 

mbryos or human cells. 
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NTRODUCTION 

he observation of transcription in li v e cells using meth- 
ds such as MS2 / MCP system ( 1 , 2 ) re v ealed that in most
rokaryotic and eukaryotic cells, transcription is discontin- 
ous and undergoes alternati v e periods of activity and in- 
cti vity, gov erned by stochastic laws. This phenomenon was 
alled transcriptional bursting ( 3–8 ). The underlying mech- 
nisms are complex because, even at the steady state, pro- 
oters can adopt multiple acti v e and inacti v e states with 

istinct timescales and transition schemes, which modulate 
he variability of e xpression le v els in single cells in non- 
rivial ways ( 9–12 ). Hence, it is necessary to infer these 
tates and timescales from observations. The results of such 

nfer ence ar e important as they provide insights into the 
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molecular mechanisms underlying promoter dynamics and
transcriptional regulation. 

Transcriptional bursting with multiple acti v e and inacti v e
promoter states can be modeled using Finite-State Markov
Models (FSMM) defined by a set of promoter states and
by the rates of stochastic transitions between these states
( 13 ). The simplest FSMM, the r andom telegr aph model,
has two states and explains the alternation of transcrip-
tionally acti v e and inacti v e periods observ ed in transcrip-
tional outputs ( 14 ). Commonly used to describe the burst-
ing of prokaryote and less complex eukaryote promoters
( 6 , 15 , 16 ), this model fails to explain more complex eukary-
ote transcription mechanisms, as we and others have re-
cently shown using li v e imaging data of human cell lines and
Drosophila embryos ( 17–20 ). In this case, bursting models
involving more than two states are required ( 21 , 22 ). 

We must emphasize that the identification of models and
rates describing the observed transcription dynamics is not
merel y a phenomenolo gical description. Indeed, this gi v es
direct access to key regulatory mechanisms at the molec-
ular le v el. A variety of perturbation e xperiments hav e in-
dica ted tha t the sta tes in the kinetic models correspond to
well defined biochemical states of the promoter, and specific
chroma tin fea tures and binding profiles of gi v en transcrip-
tion factors (e.g. assembled pre-initiation complex PIC,
or T AT A Binding Protein-bound, or nucleosome occupied
promoter; ( 7 , 16 , 23–25 )). Furthermor e, r ecent advances in
cryo-electr on micr oscopy, as well as single molecule ge-
nomic methods ( 26 ) hav e re v ealed that promoters can be
found in a multitude of molecular states as they undergo
transcription initiation or early elongation ( 27–31 ). How-
e v er, it is often difficult to figure out from molecular experi-
ments which state is rate-limiting, and this is a key question
as the rate-limiting steps are likely points of regulation. Li v e
cell transcription imaging fills this gap, and robust methods
to infer promoter dynamics from such data are thus essen-
tial for understanding the basic mechanisms of transcrip-
tional control. 

In order to decode single cell transcriptional traces, we
de v eloped BurstDECONV, a deconvolution based method
for reconstructing FSMMs from li v e transcription imaging
using RNA tagging. An ov ervie w of this method is pre-
sented in Figure 1 . BurstDECONV first decomposes sin-
gle cell MS2 / MCP li v e imaging data into individual tran-
scription initiation temporal e v ents (Figure 1 C). This in-
formation is model agnostic and r epr esents a compr ehen-
si v e spatio-temporal map of transcription that can be used
for multiple studies: identifying multiple temporal and spa-
tial scales and kinetic parameters, testing the synchronic-
ity or the correlation of transcription sites, detecting extrin-
sic noise e v ents, and performing model selection and infer-
ence ( 19 , 20 ). In a second step, BurstDECONV computes
the survival function characterizing the distribution of wait-
ing times between successi v e polymerase initiation e v ents
(Figure 1 D). Finall y, m ultie xponential parametric survi val
models are inferred and mapped to FSMM kinetic pro-
moter models. The number of exponentials r equir ed to fit
the survival functions corresponds to the number of pro-
moter states in the model, and this facilitates model com-
parison and selection (Figures 1 D and 3 ). BurstDECONV
has also been successfull y a pplied to extracting transition
r ate par ameters from real data ( 19 , 20 ) in human cells and
Drosophila embryos. Importantly, this method re v ealed an
alternati v e model of promoter pausing, described as facul-
tati v e pausing, which could not be characterized by other
li v e- or fixed-sample approaches. 

We have performed a comparative benchmarking
in which BurstDECONV was tested along with auto-
correlation ( 32 , 33 ) and Hidden Markov Model (HMM)
( 34–36 ) methods, two other a pproaches previousl y em-
ployed for analysing transcriptional bursting da ta. W hen-
e v er comparison was possible, we found that the parameter
reconstruction by BurstDECONV is significantly more
accurate than by all other methods. Moreover, our method
is precise for wide ranges of values of kinetic parameters
of transcription processes. By combining short and long
movies, we are able to quantify processes with timescales
from seconds to days. This extremely wide dynamic range
was not accessible with the previous quantitative live cell
transcription imaging approaches. 

Thus BurstDECONV proves to be a very effective tool
for analysing li v e cell transcription, paving the way to ex-
citing discoveries in the field of transcriptional control. For
a wide usage, we provide Matlab and Python implementa-
tions of our method, and a user-friendl y gra phical interface
tha t fits da ta to a variety of two and three state promoter
models. 

MATERIALS AND METHODS 

Short, high resolution movie deconvolution 

The MS2 signal from one transcription site is modeled as: 

x( t) = 

N pol ∑ 

i= 1 

x pol ( t − t i ) , (1)

where x pol is the signal from one polymerase and t i are the
successi v e initiation times. 

The initiation times are discretised t i = n i δ, n i ∈ N , 1 ≤
i ≤ N pol , where � = D min / V pol , with D min a minimal inter-
polymerase distance (in bp) and V pol the polymerase
speed (in bp / s) that we assume constant. The entire se-
quence of initiation times is then coded as a fixed size bi-
nary string B = ( b 1 , . . . , b N max ) , b n i = 1 , b j �= n i = 0 , 1 ≤ i ≤
N pol } , where N max = T / �, T is the movie length. 

If x cal ( t ) is the observed signal, calibrated in polymerase
numbers, we find B and thus t i by least-squares regression
using a genetic algorithm GA and the objecti v e function: 

O 1 ( B) = 

N f rames ∑ 

k= 1 

( x( k� ; B) − x cal ( k� )) 2 , (2)

where � is the movie time resolution and N frames is the num-
ber of frames, T = N frames � . 

The GA optimization follows four steps: estimating the
amount of polymer ases, gener ating an initial population,
a ppl ying the genetic algorithm and the final local optimiza-
tion. We estimate the number of polymerases N pol as the ra-
tio of integral intensities of the experimental signal and of
the single polymerase signal. The resulting rough estima-
tion is used to accelerate next steps. Then we pr epar e an
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Figure 1. Ov ervie w of the li v e cell transcription imaging pipeline. ( A ) Wor kflow of the pipeline. ( B ) Movies are segmented to e xtract single cell signals. ( C ) 
For each single cell we compute the sequence of polymerase positions. ( D ) Single cell data is used to compute the survival function and identify parameters 
of transcriptional bursting models. 



e88 Nucleic Acids Research, 2023, Vol. 51, No. 16 PAGE 4 OF 21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

initial population of polymerase positions. Starting with a
binary string B with N max ’0’s, we randomly pick N pol po-
sitions and change them into ’1’s. After the preparation of
the initial population, we use the genetic algorithm (MAT-
LAB built-in function ga or a modified Python function
pygad.GA, depending on the implementation) to optimize
the objecti v e function. At each step, the genetic algorithm
solver randomly selects a sub-population of parental indi-
viduals from which it produces the next generation by re-
combination, crossover and mutation. Over successive gen-
era tions, the popula tion keeps the best genera ted solutions
and ‘e volv es’ towar ds an optimal solution. The local op-
timization further decreases the objecti v e function by dis-
placing the polymerase positions a few steps to the right or
to the left. 

After optimization, the residuals x ( k � ; B optimal ) −
x cal ( k � ) for all the transcription sites in the same movie are
used for estimating the noise in the signal. We systematically
find that noise is heteroscedastic with a variance depending
non-linearly on the signal amplitude. We use cubic polyno-
mial r egr ession to approximate the dependence of the noise
variance on the signal: 

σ 2 = b 3 x 3 + b 2 x 2 + b 1 x + b 0 . (3)

The waiting times � i = t i + 1 − t i , defined as intervals be-
tween successi v e initiation e v ents coming from all the tran-
scription sites in the movie, are considered as realizations
of the same random variable � . The survival function is de-
fined as 

S( t) = P 

[ τ > t ] , (4)

and estimated (non-parametrically) using the Kaplan-
Meyer method ( 37 ) from the pooled series coming from all
the transcription sites in the same movie. 

Space dependent analysis can also be performed, by pool-
ing the transcription sites region-wise (a prior spatial seg-
mentation is needed). 

We model the survival function using the multi-
exponential family 

S( t; A , λ) = 

n exp ∑ 

i= 1 

A i exp ( λi t) , (5)

where 
∑ n exp 

i= 1 A i = 1 , �i < 0, 1 ≤ i ≤ n exp . 
The parametric estimate of the survival function is ob-

tained by least squar e r egr ession with an objecti v e function
that combines linear and logarithmic scales: 

O 2 ( A , λ) = 

α
n 

∑ n 
i= 1 ( S( t i ; A , λ) − S K M 

( t i )) 2 + 

+ 

1 −α
n 

∑ n 
i= 1 ( log ( S( t i ; A , λ)) − log ( S K M 

( t i ))) 2 (6)

where S ( t ) is defined by ( 4 ), S KM 

( t ) is the non-parametric
estimate of the survival function, 0 ≤ � ≤ 1 is a weight rep-
resenting the relati v e importance of the linear scale com-
pared to the logarithmic scale in the estimate of the survival
function. 

The use of linear and logarithmic scales was motivated by
the fact that short timescales responsible of the large initial
drop in the survival function are well captured by the linear
scale, whereas longer timescales responsible for the smaller
decrease in the tail of the survival function are well captured
by the logarithmic scale. 

The multi-exponential least-squares regression is per-
f ormed f or se v eral values of the number of exponentials
n exp . The selection of the number of exponentials is based
on three criteria: the optimal value of O 2 , the Kolmogorov–
Smirnov test using the optimal S( t i ; A , λ) as r efer ence distri-
bution and the uncertainty of the parameters A , λ obtained
by considering optimal and close to optimal solutions
(Figure 5 ). 

Combining two movies 

The second version of the method uses two movies. The
short high resolution movie is processed exactly as in the
first method, resulting in the survival function S 1 ( t ). The
transcription site signals from the long low resolution movie
ar e thr esholded. The sub-thr eshold intervals ar e used to
estimate a survival function S 2 ( t ). Given that S 1 ( t ) misses
waiting times longer than the short movie length T and
that S 2 ( t ) misses waiting times shorter than T min (estimated
as the sum of the long movie resolution and the single
polymerase signal duration), an interpretation of these two
survival functions in terms of conditional probabilities is
appropriate: 

S 1 ( t) = P 

[ τ > t | τ < T 

] , 

S 2 ( t) = P 

[ τ > t | τ > T min ] . (7)

Using the total probability theorem we obtain the multiple
time scale survival function 

S( t) = 

{
(1 − p s ) S 1 ( t) + p s , t < T 

p l S 2 ( t) , t > T min 
(8)

where p s = P 

[ τ < T 

] and p l = P 

[ τ > T min ] . 
p l is estimated using the formula (see ( 19 )): 

p l = 

N i nacti ve 

N i nacti ve + N active 
= 

= 

N i nacti ve 

N i nacti ve + 

P active (1 −S( T min )) 

−T min S( T min ) + 

∫ T min 
0 S( u ) du 

, (9)

where N inactive is the number sub-threshold intervals (re-
solv ed and countab le), N active is the number of waiting times
inside over-threshold intervals (not resolved), P active is the
probability to be over threshold (estimated as the time frac-
tion from total that is over threshold) in the long movie sig-
nals; for this estimate we use S ( t ) ≈ S 1 ( t ) for t < T min . 

p s is optimised to minimize the gap between the short
time and long time survival function branches in ( 8 ). The
estimate of the gap uses interpolation and is possible only if
there is an overlap between S 1 ( t ) and S 2 ( t ). 

The multi-exponential parametric estimate of the sur-
vival function is now performed using the multiple time
scale survival function ( 8 ). 

Rate parameter identifiability 

Both versions (short movie and short-long movie) of our
method end with the identification of the FSMM rate
parameters. This identification is possible symbolically,
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sing analytical formulas that relate the multi-exponential 
arameters A , λ to the rate parameters. 
For the sake of completeness we introduce, in the simpli- 

ed case of the r andom telegr aph model, the ma thema tical 
bjects needed for solving this problem. Some solutions for 
SMM with 2, 3, and 4 states can be found in ( 19 ). The al-
orithmic solution for an arbitrary number of states will be 
rovided in a separate publication. 
Let us denote by 1 and 2 the states OFF and ON of 

he random telegraph model, respecti v ely. In or der to study 

ranscription initiation we add to the model a third state 3 

 epr esenting the initiation e v ent. The e xtended three states 
SMM is defined by the transition rate matrix Q whose 
lements are the transition rates between the states of this 
odel. For instance, the matrix element Q 12 r epr esents the 

r ansition r ate from OFF to ON , which is k 

+ . Furthermore, 
e ar e inter ested in the waiting time to initiation, so we de-

ide to stop the FSMM whene v er we reach the state 3, which
eans that all the elements on the last row of Q are zero. 
he elements of the transition ra te ma trix sum to zero on 

ny row, ther efor e 

Q = 

( −k + k + 0 

k − −( k − + k ini ) k ini 
0 0 0 

) 

he vector 

X = 

( 

P 

[ M( t) = 1 | M(0) = 2 

] 
P 

[ M( t) = 2 | M(0) = 2 

] 
P 

[ M( t) = 3 | M(0) = 2 

] ) 

) 

, 

here M ( t ) is the state of the FSMM at the time t satisfies
he master equation: 

d X 

dt 
= Q 

T X , X (0) = 

( 0 

1 

0 

) 

, (10) 

here Q 

T stands for the transpose of Q . 
Eq. ( 10 ) is equivalent to (

˙ X 1 
˙ X 2 

)
= 

˜ Q 

(
X 1 
X 2 

)
, (11) 

˙ X 3 = k ini X 2 , (12) 

here 

˜ Q = 

(−k + k −
k + −( k − + k ini ) 

)
. 

The waiting time w between successi v e initiation e v ents 
 epr esents the first return time in the state 3 after starting in
he state 3 (this is equivalent to starting in 2 because after 
nitiation the promoter is immediately freed and gets to the 
N state). The survival function is then S( t) = P 

[ w > t ] = 

 − P 

[ M( t) = 3 | M(0) = 2 

] = 1 − X 3 ( t) , which shows that 
ne can compute the survival function by solving the linear 
ystem of ODEs ( 11 ) with the initial conditions from ( 10 ).
nterestingly, for constant parameters, the distribution of w 

oes not change in time (it is the same during transient and 

tead y sta te gene expression). In other words, the sequence 
f initiation e v ents is a renewal process. 
The solution of ( 11 ) reads (
X 1 
X 2 

)
= C 1 

(
α1 
1 

)
exp ( λ1 t) + C 2 

(
α2 
1 

)
exp ( λ2 t) , (13) 

X 3 = A 1 (1 − exp ( λ1 t)) + A 2 (1 − exp ( λ2 t)) , (14) 

here 
(

α1 
1 

)
, 
(

α2 
1 

)
ar e eigenvectors and �1 , �2 ar e eigen- 

alues of the matrix 

˜ Q , and C 1 , C 2 are the solutions of the
ystem 

C 1 α1 + C 2 α2 = 0 , 

C 1 + C 2 = 1 . (15) 

urthermore, 

S( t) = A 1 exp ( λ1 t) + A 2 exp ( λ2 t) . (16) 

rom ( 14 ) and ( 12 ) 

A 1 = −k ini C 1 /λ1 , A 2 = −k ini C 2 /λ2 . (17) 

qs. ( 16 ), ( 15 ) and ( 17 ) provide the solution of the direct
roblem that consists in computing the survival function 

arameters gi v en the tr ansition r ate par ameters. The inverse 
roblem consists in computing the rate parameters k 

+ , k 

−, 
 ini gi v en the independent survival function parameters A 1 , 
1 , �2 . The rate parameters are identifiable if and only if the 

nv erse prob lem is well posed, i.e. it has a unique solution. 
The inv erse prob lem for the random telegraph model cor- 

esponds to solving the system 

λ1 + λ2 = −( k + + k − + k ini ) , (18) 

λ1 λ2 = k ini k + , (19) 

A 1 λ1 + A 2 λ2 = −k ini . (20) 

Eqs. ( 18 ) and ( 19 ) are the Vieta’s formulas, resulting from
he fact that �1 , �2 are the solutions of the characteristic 
quation of the matrix 

˜ Q . Eq. ( 20 ) follows from ( 15 ) and
 17 ). 

For the random telegraph model, the solution of the in- 
 erse prob lem is unique and the tr ansition r ate par ameters
r e expr essed in terms of symmetric rational functions in 

he variables �1 , �2 , A 1 , A 2 , i.e. ratios of polynomials invari- 
nt with respect to permutations of these variables. More 
recisely, 

k ini = −S 1 , 

k − = ( S 1 − L 1 ) S 1 /L 2 , 

k + = −L 2 /S 1 (21) 

here S 1 = A 1 �1 + A 2 �2 , L 1 = �1 + �2 , L 2 = �1 �2 , are sym-
etric polynomials. 
More generally, one can show that whene v er the inverse 

roblem has a unique solution, this can be written in terms 
f symmetric polynomials. Of course, the inverse problem 

an also have no solutions, or have an infinity of solutions. 
The question of model and parameter identifiability can 

e decomposed into two steps. First, the survival function 

arameters are uncertain because they are obtained from 

ata. Second, the inverse problem, consisting in identifying 
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the model and its kinetic parameters for the survival func-
tion parameters can be not well posed and have infinitely
many solutions. This source of uncertainty can be also ad-
dressed using symbolic methods ( 19 ). There are se v eral sit-
uations of symbolic non-identifiability / uncertainty: 

• Model non-identifibility / uncertainty. Model parameters
are uniquely determined for each model, but different
models gi v e e xactly the same survi val function with dif-
ferent parameters (the case of models M 1 , M 2 , Fig-
ure 3 C). 

• Parameter non-identifiability / uncertainty. Model kinetic
parameters leading to the same survival function form
smooth manifolds, meaning that some of them are free.
Concurrentl y, m ulti-exponential parameters of the sur-
vival function are constrained, meaning that there are less
free parameters of the multi-e xponential survi val func-
tion (the case of the model M 3 , Figure 3 C). 

In both cases of non-identifiability / uncertainty, more
data is needed in order to directly identify one or se v eral
parameters. We have implemented this strategy in ( 19 , 20 )
where, using chromatin immunoprecipitation or genetic
perturbations of pausing, the parameter k + 

2 was shown to
correspond to exit from proximal pausing, indicating that
the model M 2 should be pr eferr ed to M 1 . 

Determining the polymerase dwell time from the signal auto-
correlation 

The signal autocorrelation function is defined as R ( t , t 
′ 
) =

Cov( x ( t ), x ( t 
′ 
)), where x ( t ) is the single site MS2 signal. For

a stationary MS2 signal, this function depends only on � =
t 

′ − t and factorizes as: 

R( τ ) = F ( τ ; k )( H ( τ + d) − 2 H ( τ ) + H ( τ − d)) , (22)

where d is the dwell time, k contains all model parame-
ters including the dwell time (for instance k = ( k 

+ , k 

−, k ini ,
d ) for the random telegraph model), H ( x ) = −x �( − x ),

θ ( x) = 

{
1 if x ≥ 0 

0 if x < 0 

is the Heaviside function (see ( 32 ) for

a derivation). 
The determination of the dwell time results from fitting

the theoretical model ( 22 ) to the empirical autocorrelation
function resulting from data. The test of this method is il-
lustrated in the Supplementary Table S1. 

It turns out from ( 22 ) that the autocorrelation function R
depends strongly on d and only weakly on the other param-
eters k . For this reason d is precise, whereas k is uncertain
when estimated from R . 

RESULTS 

Principles and workflow 

The input data for our model are li v e imaging data of
nascent transcription, with nascent RNAs labeled with a
fluorescent tag. As test samples, we used MS2 / MCP data
collected from either cultured human cells or Drosophila
early embryos. This labelling method is bipartite, with an
RNA containing MS2 repeats of various lengths, detected
by an RNA binding protein, here MCP, fused to a fluores-
cent protein (Figure 2 D). After li v e imaging, MS2 / MCP
fluorescent signals of single transcription sites (temporal
traces) are extracted through image analysis methods de-
scribed in ( 18 , 20 ) that track each transcription site in 3D in
order to extract the intensity of the MS2 signal over time.
For each movie we produce an intensity matrix whose rows
and columns r epr esent transcription sites and time, r espec-
ti v ely (Figure 2 A). Because we wish to separate individual
transcription initiation e v ents we use movies with high tem-
poral resolutions (typically 3–4 s) and the sequence of tran-
scription initiation e v ents is reconstructed independently
for each transcription site (Figure 2 B, C). The MS2 / MCP
fluorescent signals are calibrated to be expressed as poly-
merase numbers. In order to decompose the signal ob-
served from multiple polymerases (Figure 2 E) into initia-
tion e v ents, we first consider the signal e xpected from a
single polymerase, schematized in Figure 2 D. The single
polymerase pattern is computed from n seq , n post , V pol and
t a , r epr esenting the length in base pairs of the MS2 se-
quence, the remaining length after the MS2 sequence un-
til the polyA site, the polymerase elongation speed and the
3’-end processing / polyadenylation time, respecti v ely. In this
notation, the polymerase dwell time on the DNA is ( n seq
+ n post ) / V pol + t a . In this model, we consider that a poly-
merase, once initiated, will continue transcription until it
reaches the 3’-end. The estima ted initia tion times are ob-
tained by least squares regression using a global genetic al-
gorithm, followed by local optimization (Figure 2 F). Multi-
exponential parametric estimates of the survival function
are then used to characterize the distribution of the wait-
ing times between successi v e initiation e v ents for the entire
population of sites (see Figure 2 G and Materials and Meth-
ods). The multi-exponential r egr ession proposes one, two,
or more exponentials. The number of exponentials corre-
sponds to the number of states in the FSMM (Figure 3 ).
Finally, comparison of the exponentials found by r egr ession
to the analytic solutions of the master equation satisfied
b y the surviv al function allows us to write explicit formu-
las for FSSM parameters in terms of the r egr ession r esults
(Figure 2 H). 

A fe w e xamples of FSMMs ar e r epr esented in Figur e 3 .
The r andom telegr aph model (Figure 3 A) contains two
states: the ON state corresponding to acti v e transcription,
modeled by Poissonian initiation with constant initiation
rate k ini ; and the inacti v e OFF state where no initiation
e v ents are observed. As the two state random telegraph
model is generally too simplistic to fully describe the com-
plexity of the transcription process ( 18 , 38 , 39 ), we also en-
visaged more complex models with three states, compris-
ing two inacti v e OFF states (models M 1 , M 2 and M 3 ). In
the model M 1 (Figure 3 C), an inacti v e promoter occupying
the state OFF 2 can become acti v e (state ON) or switch to
a deeper inacti v e state OFF 1 . Inacti v e states r epr esent var-
ious molecular states of the promoter, such as chromatin
states or assembly stages of the transcription pre-initiation
complex (PIC). In the model M 2 (Figure 3 C), the second
inacti v e state was interpreted as proximal pausing. This in-
terpretation is based on the experimental manipulation of
pausing (in cis or in tr ans ) tha t we performed with model
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Figure 2. Ov ervie w of various steps of BurstDECONV. ( A ) Heatmap of the signal extracted from a high resolution movie. Each row r epr esents a transcrip- 
tion site intensity in time (x-axis). The colour bar depicts the number of nascent RNA. ( B ) Timeline chart r epr esenting the transcription initiation e v ents 
obtained for each corresponding transcription site intensity trace after performing deconvolution using the genetic algorithm. ( C ) Close up of the timeline 
chart. Each bar r epr esents a single e v ent; successi v e e v ents are separated by waiting times. ( D ) The RNA tagging construct and its corresponding signal 
generated from a single polymerase. The orange box labeled Pr r epr esents the promoter site where transcription initiation takes place. The MS2 sequence 
is located a few bases downstream of the promoter region. The signal profile is sho wn belo w the construct. ( E ) Intensity trace from one transcription site. 
( F ) Example of polymerase positions reconstructing the transcription site intensity trace in the last three generations of the genetic algorithm. The red 
trace is the intensity trace that is to be reconstructed. The black trace is the reconstructed signal from the predicted polymerase positions (r epr esented with 
b lue bars). ( G ) Survi val function estimated from the waiting times between the predicted polymerases. The dotted r ed curve r epr esents the Gr eenwood 
confidence interval of the survival function. We obtain both non-parametric survival function (depicted with red circles) by Kaplan-Meier method, and 
the parametric survival function by least square regression (depicted with the b lack curv e). The parametric survival function is a sum of N exponentials. 
( H ) The various coefficients of the parametric survival function are used to obtain the model parameters (switching rates between different states) through 
symbolic re v erse engineering. 
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Figure 3. Finite-State Markov Models of transcription dynamics. ( A ) Model depicting two promoter states, ON and OFF with the respecti v e transition 
rates. ( B ) The theoretical survival function corrresponding to the two-state exponential model has two timescales. The two separated timescales can be 
distinguished as two distinct slopes, piecewise in the semi-logarithmic r epr esentation. ( C ) Thr ee-state models with different transition schemes. ( D ) The 
theoretical survival function of the three state models M 1 , M 2 is a sum of three exponentials with no constraints on the amplitudes A i . The three sepa- 
rated timescales can be distinguished as three distinct slopes, piecewise in the semi-logarithmic r epr esentation. These two models have the same type of 
survival function and can not be discriminated by BurstDECONV only. ( E ) The theoretical survival function of the three state model M 3 is a sum of three 
exponentials with constrains on the amplitudes A i and exponents �i . Only two free timescales can be distinguished in the semi-logarithmic r epr esentation. 
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Table 1. FSMM parameters used to generate the artificial datasets. Fur- 
thermore, the MS2 sequence and elongation rate parameters were n seq = 

1292 bp (24 ×MS2), n post = 4526 bp , V pol = 45 bp × s −1 for D1–5 and 
D7–9, n seq = 5800 bp (128 ×MS2), n post = 8300 bp, V pol = 67 bp × s −1 

for D6 and D10–14. D1–5 and D7–9 parameters come from the study of 
Drosophila promoters in ( 20 ). D12–14 is based on estimates of HIV-1 tran- 
scription bursting in human cells studied in ( 19 ). D6 and D10–11 come 
from estimates of bursting from wild-type and mutated EEF1A promoters 
inserted in human cell lines 

Dataset / Ref. Parameters 

2 states k + [s −1 ] k −[s −1 ] k ini [s −1 ] 

D1 ( 20 ) 0.02036 0.00150 0.11432 
D2 ( 20 ) 0.01117 0.00593 0.07637 
D3 ( 20 ) 0.01189 0.01430 0.07745 
D4 ( 20 ) 0.02439 0.00144 0.13397 
D5 ( 20 ) 0.04169 0.00414 0.11277 
D6 0.00484 0.00025 0.113 
3 states M 2 k + 1 [ s 

−1 ] k −1 [ s 
−1 ] k + 2 [ s 

−1 ] k −2 [ s 
−1 ] k ini [ s −1 ] 

D7 ( 20 ) 0.01426 0.00339 0.06553 0.05751 0.17102 
D8 ( 20 ) 0.00661 0.00013 0.05772 0.01054 0.13201 
D9 ( 20 ) 0.00332 5.3 × 10 −5 0.05804 0.00586 0.13119 
D10 0.0001 2.3 × 10 −5 0.00091 0.00024 0.019 
D11 0.00023 3.2 × 10 −5 0.0011 0.00019 0.018 
D12 ( 19 ) 0.0015 4.9 × 10 −5 0.01 0.0043 0.17 
D13 ( 19 ) 0.00015 0.00031 0.0012 0.0028 0.1 
D14 ( 19 ) 6 × 10 −5 0.00035 0.00089 0.003 0.063 

B
r

T
p
d  

b
u
t
o
r
s
s
f
t
i
p

t
o

c
l
s
v
w
m  

r
a
o
u
b
o
s

aused promoters such as HIV-1 in human cells or de v el- 
pmental core promoters in Drosophila embryos ( 19 , 20 ). In 

he model M 2 the transition from ON to PAUSE is stochas- 
ic, ther efor e pausing is facultati v e. This is at odds with
he traditional obligatory pausing model M 3 (Figure 3 C) 
n which the pausing occurs after initiation and systemat- 
cally pre v ents elongation, as usually depicted in the liter- 
ture ( 40 ). The model M 3 predicts a special type of sur- 
ival function whose multi-exponential parameters are con- 
trained by an additional relationship (see Figure 3 E and 

 19 )). 
The inv erse prob lem consisting in computing the model 

inetic parameters from the survival function parameters 
 A i , �i ), 1 ≤ i ≤ n , is well posed when it has a unique solu-
ion for all survival function parameters satisfying the con- 
traints λi < 0 , 1 ≤ i ≤ n, 

∑ n 
i= 1 A i = 1 . This is the case for

he random telegraph model, for the models M 1 , M 2 , for a 

amily of models of arbitrary size discussed in ( 19 ), but not 
or the model M 3 . For M 3 , the survival function parame- 
ers are constrained by one bilinear equation in A i and �i 
see Materials and Methods and Figure 3 ); furthermore, in 

his case the inverse problem has infinitely many solutions, 
hat depend on one free parameter. 

rtificial data shows the robustness of BurstDECONV 

n order to benchmark the method we use a collection 

f artificially generated datasets. These datasets consist of 
S2 signals from N transcription sites. The models and 

orresponding parameter sets are gi v en in Table 1 , and 

hey are chosen to mimic a variety of real biological situ- 
tions. Indeed, the parameter sets simulate observations of 
ild type and mutated snail (D2,D3,D5,D7,D9) or Krup- 
el (D1,D4,D8) Drosophila promoters studied in ( 20 ), or 
rom HIV-1 promoters inserted in Hela reporter cell line in 

arious configurations (notably with and without the viral 
ransactiva tor Ta t; D12–14) studied in ( 19 ). We have added 

 few more parameter sets corresponding to the wild-type 
nd mutant human EEF1A promoters inserted in human 

ell lines (D6;D10–11). These data cover a large range of ex- 
ression le v els, and correspond to promoters having two or 
hree rate-limiting steps, and being mostl y, or onl y episodi- 
ally, acti v e. 

The artificial data was generated using the parameter 
stimates obtained with real data. Using the Gillespie al- 
orithm we generated N independent trajectories of the 
SMM that provide the initiation e v ents ov er a time in-

erval T corresponding to the movie length. Then, we use 
he single polymerase patterns to compute the MS2 sig- 
al. The single polymerase patterns correspond to 24xMS2 

nd 128xMS2 constructions in Drosophila and in human 

ell lines, respecti v ely (see ( 18–20 )). For mor e r ealism, we
dd noise to this signal. In analogy to real data, we use 
aussian heteroscedastic noise (see ( 19 ) and Material and 

ethods). 
In order to evaluate the accuracy of the parameter 

econstruction we use the logarithmic error defined as 
lo g 10 ( k r / k true )|, w her e k r , k true ar e the r econstructed param-
ter and their true value, respecti v ely. Errors were consid- 
red unacceptable if they correspond to one order of mag- 
itude, i.e. if the logarithmic error is larger than one. 
urstDECONV combines short high resolution with long low 

 esolution mo vies to co ver widely distributed timescales 

ranscription bursting is a complex phenomenon involving 

rocesses with multiple timescales distributed over many or- 
ers of magnitudes ( 8 , 18 ). The movie length sets the upper
ound of the timescales of processes that can be identified 

sing li v e cell RNA imaging data. A short movie may fail 
o detect slow processes that involve long waiting times. In 

rder to test this we have used models that have timescales 
anging from 1s to 10 

4 s. Deconvolution of a short (20 min) 
ignal (Figure 4 B) results in mediocre parameter recon- 
truction (Figure 4 F) and as expected, errors were larger 
or smaller kinetic parameters (large timescales). In order 
o illustrate this effect we have used the dataset D14 that 
ncludes very long waiting times (very small values of the 
arameters k + 

1 and k + 

2 ). 
Due to bleaching of the signal, obtaining long movies (in 

he h scale) while imaging with a high temporal resolution 

f few seconds is extremely challenging. 
Instead, we designed a version of BurstDECONV that 

ombines short, high resolution movies, and long, low reso- 
ution movies. The first step consists in deconvolution of the 
hort high-resolution movies and computation of their sur- 
ival function. The second step processes the long movies, 
hich last typically 10 h with a temporal resolution of 3 

in. In this case, acti v e and inacti v e periods are defined di-
ectly by considering the parts of the MS2 signal that are 
bove and below a thr eshold, r espectively, with the thresh- 
ld corresponding to the brightness of 2–3 RNAs (Fig- 
re 4 C). By thresholding, we miss the short waiting times 
etween transcription e v ents that occur during acti v e peri- 
ds, and we thus count only the long waiting times corre- 
ponding to inacti v e periods (i.e. waiting times greater than 
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Figure 4. Combining short and long movies. ( A ) Simulated long duration signal using the three-state model M 2 and high tempor al resolution, par ameters 
corresponding to dataset D14. The timeline with black markers r epr esent polymerase start time positions. The transcription site signal is r epr esented in 
blue, using short movie high temporal resolution. The x-axis major tick marks in black (every 1200 seconds) r epr esent the duration of a high resolution 
short movie (1 stack e v ery 3 s for 20 min). The minor ticks in red represent 3 min marks, i.e. the resolution of a long duration movie (1 stack e v ery 3 min). 
( B ) Simulated low resolution short movie using the model M 2 . Blue bars represent polymerase positions found by GA after deconvolution (blow-up start 
of the signal from A ). ( C ) Low resolution long movie with thresholding to extract off periods or waiting times. ( D ) Histogram of length of waiting times 
obtained from short movies (in blue) and long movies (in orange). ( E ) Matched Survival function of the long (green) and short movie (red) with overlap 
in the middle. ( F ) Accuracy of parameter reconstruction of the model M 2 for the parameter sets D12–14 in Table 1 using only a short movie and a short + 

long movie. ( G ) Average logarithmic error of the parameter reconstruction of the model M 2 for the parameter sets D12–14 in Table 1 using a short movie 
(20 min e v ery 3 s) combined or not with a long movie (10 h e v ery 3 min). ( H ) Long and short movie survival functions and their overlap for different 
lengths and resolutions of the short movie. ( I ) Average logarithmic error of the parameter reconstruction of the model M 2 for the parameter sets D12–14 
in Table 1 for different durations and resolutions of the short movie. 
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he dwell time of a polymerase, defined as the total time 
ength of the signal generated by a single polymerase). The 
istribution of the long waiting times overlaps that of short 
aiting times obtained from the short movies (Figure 4 D). 
his overlap permits us to reconstruct a multiscale survival 

unction that covers many orders of magnitude in time (see 
igure 4 E and ( 19 )). The multiscale survival function is then
sed for multi-exponential r egr ession and provides the ki- 
etic parameters of the model. The combination of the two 

ovie types permits a good reconstruction of these param- 
ters (Figure 4 G). 

The length of the short movie is critical for ensuring 

he overlap of the short and long timescale survival func- 
ions and an accurate parameter r econstruction. Inter est- 
ngly, longer short movie with lower temporal resolution (60 

in length with frames e v ery 9 s, instead of e v ery 3s for 20
in) can ensure a better reconstruction of the model pa- 

ameters (Figures 4 H, I), e v en with initiation rates ( k ini ) in
he range of 3 s. This provides useful guidelines for the ex- 
erimental design and imaging conditions. 
Thus, BurstDECONV allows to uncover processes with a 

emar kab le distribution of timescales ranging from seconds 
o days. 

urstDeconv determines the number of states of the kinetic 
romoter model 

 key question when analyzing li v e cell transcription imag- 
ng experiments, is the choice of the model used to fit the 
ata. Instead of arbitrarily employing the simple random 

elegraph promoter model, our procedure uses the multi- 
xponential fit of the waiting time data to determine the 
umber of promoter sta tes tha t should be considered. We 
ecall that, except for special cases when the spectrum of 
he matrix 

˜ Q is degenerate, the number of states in the tran- 
criptional bursting model is equal to the number of expo- 
entials n exp in the multi-exponential fit. 
In order to compare models with different n exp we use sev- 

ral indicators for the goodness of fit (Figure 5 A). The ex- 
erimental estimate of the survival function by the Kaplan– 

eyer method provides a confidence interval based on 

reenwood’s formula ( 20 ). A first accuracy test consists 
n checking that the optimal parametric estimate of the 
urvival function lies within this confidence interval. The 
olmogoro v–Smirno v (KS) test and the optimal value of 

he objecti v e function O 2 (the mean squared de viation; see 
aterial and Methods for a definition) provide alternati v e 
easures of the quantitati v e goodness of fit. The Green- 
ood’s confidence interval and KS methods do not take 

nto account errors resulting from the imperfect join of the 
hort and long movie survival functions. Ther efor e, the only 

oodness of fit measure when one also uses long movies is 
he value of the objecti v e function O 2 . 

The goodness of fit systematically increases with n exp and 

ne would like to know when to stop. The stopping crite- 
ia can be based on parsimony (Figure 5 A): choose the less 
omplex model (smallest n exp ) whose goodness of fit does 
ot differ significantly from the next more complex one. An 

lternati v e strategy can use cross-validation. We illustrate 
ross-v alidation b y splitting the artificial data in a train- 
ng and a validation subset. Both training error and vali- 
ation error decrease with n exp . Howe v er, their difference 
the validation gap) has a minimum. The optimal n exp corre- 
ponds to training and validation errors that are as close as 
ossible, i.e. corresponding to the minimal validation gap. 
 large validation gap indicates either underfitting (when 

oth training and validation errors are large) or overfitting 

Figure 5 B). 
Cross-validation is usually difficult to set in practice when 

he number of available cells is not large enough. In this case 
e estimate overfitting by parametric uncertainty. Indeed, 
n ov erly comple x model can fit data equally well for dif- 
erent values of its parameters. We use optimal and close to 

ptimal solutions to define uncertainty intervals that con- 
ain the parameters leading to a close to optimal fit. We 
hen gradually increase n exp until the goodness of fit (train- 
ng error) becomes sufficiently small while the uncertainty 

arametric intervals are not large (Figure 5 A). 
Alternati v e model selection procedures, based on hierar- 

hical Bayesian learning have been proposed for obtaining 

he parametric survival function and the number of expo- 
entials (chapter 5 of ( 41 )). Their practical implementation 

ill be tested in future work. 

urstDECONV is robust against error and suboptimal ex- 
erimental designs 

obustness against changes in calibration. In this method 

nd in any quantitati v e method based on li v e cell transcrip-
ion imaging, the polymerase loading rate ( k ini ) can be de- 
ermined only if the signal intensity is expressed in units of 
ull-length transcripts. 

The calibration is performed by dividing the transcrip- 
ion site signal intensity by the calibration factor that is 
efined as the contribution to intensity of a single RNA 

olecule. This factor can be computed in different ways. In 

rder to calibrate fluorescent signals from li v e Drosophila 

mbryo imaging, we used single-molecule hybridization ex- 
eriments (smFISH) as described in ( 20 ). In human cell 

ines, we collected right after the end of the movie one 3D 

tack –– termed calibration stack –– with increased laser in- 
ensity, w hich similarl y allowed reliable detection and quan- 
ification of the brightness of individual RNA molecules 
 18 , 19 ). 

We illustrate the importance of the calibration factor by 

esting the effect of altering it in artificial data (Figure 6 ). 
ecreasing the calibration factor corresponds to underes- 

imating the contribution of one RNA to the signal and 

orresponds to more polymerases to model the same sig- 
al (Figure 6 A). This also has an influence on the survival 
unction, because more polymerases mean shorter waiting 

imes between successi v e initiation e v ents (Figure 6 B). In- 
reasing the calibration factor leads to decreased estimates 
f all kinetic parameters (Figure 6 C). As expected, the poly- 
er ase initiation r ate (par ameter k ini in the random tele- 

raph model) scales like the inverse of the calibration fac- 
or (Figure 6 C). The effect of the calibration factor on 

he switching parameters ( k 

+ and k 

− in the random tele- 
raph model) is asymmetric. It is weaker when the cali- 
ration factor is less than optimal and larger for calibra- 
ion factor larger than optimal (Figure 6 E). In other words 
verestimating the one polymerase signal leads to larger 
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Figure 5. Selection of the number of exponentials in multi-exponential survival models. ( A ) The number of exponentials n exp in the multi-exponential 
survival model is first selected using the Greenwood confidence interval for the Kaplan-Meyer non-parametric estimator. One verifies that the optimal 
parametric estimate is included in the confidence interval of the non-parametric estimate, for increasing n exp starting with n exp = 1. The selected n exp value 
is the first one that satisfies this condition. If the result is inconclusi v e (bor derline), we e v aluate the training error b y using the least-square error or the 
Kolmogoro v–Smirno v test, and the overfitting by using the width of the parametric uncertainty intervals. The selected n exp is the first one that has similar 
training error and lower parametric uncertainty than n exp + 1. ( B ) Cross-validation. The dataset (set of nuclei) obtained from a two-state ground truth 
model (dataset D6) is split into a training and validation subsets. Then the model capacity is increased by increasing n exp . Both training and testing errors 
decrease with n exp but the difference between the two (the cross validation gap) has a minimum at the ground truth. The cross-validation can be used for 
selection when the number of samples (nuclei) is large enough. 
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Figure 6. Testing the effect of a change in the calibration factor. ( A ) Simulated signal for a two-state model, dataset D1 in Table 1 , for different values of the 
calibration factor. The cyan timeline bars indicate the start time positions. The simulated transcription site signal is r epr esented in r ed. The r econstructed 
signal (after deconvolution) is r epr esented in black. For the ground truth, the number of simulated polymerases is 52 and the calibration factor is one. 
( B ) Survival functions reconstructed for different values of the calibration factor (two-state model, dataset D1 in Table 1 ). ( C ) Reconstructed parameter 
values for different calibration factors (two-state model, dataset D1 in Table 1 ). ( D ) Nonparametric survival function compared to parametric 2- and 
3-exponential functions for a calibration factor = 2. Doubling the calibration factor with respect to the ground truth can mistakenly lead to a change in 
the model selection from two (ground truth, falsified by the confidence interval criterion) to three states. ( E ) Average logarithmic parameter reconstruction 
error for various datasets and calibration factors. 
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reconstruction errors than underestimating it. A possible
explanation of this effect is that increasing the calibration
factor reduces the apparent number of initiation e v ents
which renders the identification of the switching periods less
reliab le. In or der to illustra te these ef fects we have used the
dataset D1. This dataset (together with D4 that is very sim-
ilar) proved to be the most sensiti v e to calibration, as in this
case a twofold increase of the calibration factor with respect
to the optimal value leads to selecting a three states instead
of the ground truth two states model, see Figure 6 D. This
dataset corresponds to a highly acti v e promoter as k 

− and
k 

+ are small and large, respecti v ely. 

Robustness against changes in polymerase speed and dwell
time. In our method, the polymerase speed is considered
to be known. Changing this parameter is roughly equiva-
lent to changing the polymerase dwell time and has effects
on the number of polymerases (and loading rate parameter)
opposed to changing the calibration. 

Robustness against changes in time resolution. A low reso-
lution mo vie pro vides poor r epr esentations of the MS2 in-
tensity (Figure 7 A). The deconvolution algorithm tends to
interpret local drops in the MS2 signal as an OFF state.
Howe v er, these drops and the corresponding OFF states
may be missed for very low resolutions (such as 131.3 s in
Figure 7 A). Missing OFF states lead to a larger number of
predicted polymerase positions (Figure 7 B), steeper sur-
vival functions (Figure 7 C) and errors mostly in the ON
to OFF tr ansition r ates (par ameter k 

− in Figure 7 D). The
shorter timescales, corresponding to the parameters k 

+ , k ini
are less affected. The critical resolution producing large er-
rors in the number of polymerases, survival function and ki-
netic parameters is close to the polymerase dwell time. We
compared the results obtained by our procedure on artificial
datasets resampled with various temporal resolutions and
found that the method is robust and tolerates resolutions
(11–20 s) much lower than the ones currently employed (3–
3.9 s). Thus, there is not significant gain when imaging ev-
ery 3–4 s compared to imaging e v ery 11–20 s. This again
provides important guidelines to design optimal imaging
conditions. 

Robustness against noise in the data. In order to simu-
late a noise that resembles real experimental data, we an-
alyzed the variance of the residuals resulting from the least-
squares fitting. We have found that residuals are normally
distributed with a variance increasing with the le v el of the
predicted signal, which means that the experimental noise
is heteroscedastic. A thir d or der polynomial fitting was
enough for approximating this dependence (see Materials
and Methods). We thus have added Gaussian noise to the
artificial data, whose variance has the same polynomial de-
pendence on the mean as the experimental data. We have
found that e v en for a noise amplitude multiplied by four
with respect to the experimental values, BurstDECONV is
able to reconstruct the parameter values used for the simu-
lation (Figure 8 ). The accuracy is very good for experimen-
tal noise amplitudes. To some extent, the noise in the sig-
nal is averaged by the least-squares optimization step and

ther efor e no noise subtraction or estimation is needed for  
the parametric model reconstruction in BurstDECONV. In
order to illustrate these effects we have used the datasets
D12–14 because they have multiple, well separated waiting
times, which allow us to test the effect of noise on different
timescales. 

Robustness against the detection limit. It is very common
in li v e cell imaging to have a background noise signal that
sets a detection limit. To r ecr ea te this ef fect, we have added
a supplementary component to the noise, which is indepen-
dent of the MS2 signal. We tested different amplitudes of
this basal noise corresponding to one, two or four molecules
of RNA, respecti v ely. The effect was tested on the datasets
12–14 as these include long waiting times. 

The r esults ar e shown in the Supplementary Figur e S1.
The error induced by the background noise is small (smaller
than one in base 10 logarithmic scale) for the parameters k + 

1 ,
k −1 , k ini and for all the tested noise values. For the datasets
13, 14 the parameters k + 

2 and k −2 are accurate for small noise,
but can be inaccurate for a large background noise. How-
e v er, reconstruction of parameters of the dataset 12 is par-
ticularl y robust: the lo garithmic error is smaller than one
for all parameters and noise values. 

It is reasonable to hypothesize that highly acti v e promot-
ers with high transcription site intensities are less affected
by the RNA detection limit because they are above the de-
tection threshold most of the time. This is indeed what we
see as dataset 12 (known str ong pr omoter) showed lower
reconstruction errors as compared to the other datasets 13
and 14 (weak promoters). 

Benchmark of BurstDECONV against state-of-the-art
methods 

We have compared BurstDECONV to the two main existing
methods generally employed in quantitati v e transcriptional
bursting, namely auto-correlation ( 33 ) and Hidden Markov
Model (HMM) methods ( 34 , 36 ). 

The auto-correlation method ( 32 , 33 , 42 ) uses the auto-
correlation function of the single transcription site signal
as a model-agnostic r epr esentation of the li v e cell tran-
scription imaging data. Kinetic parameter inference can be
performed by fitting theor etical auto-corr elation functions
to the empirical auto-correlation function obtained from
the time series data. Theoretical auto-correlation function
models are available for the r andom telegr aph model ( 32 , 33 )
but also for a three state model (yet different from our mod-
els M 1-3 ) ( 33 ). 

The HMM method ( 34 ) is based on a fixed choice of a
mechanistic model. The model is inferr ed dir ectly from data
by the method of maximum lik elihood. Lik e in our models,
in the HMM model it is supposed that the promoter can
be successi v ely in one of the acti v e or inacti v e states from a
finite set of states. The transitions between states are mod-
eled by a FSMM. Contrary to our models where the poly-
merase loading is a Poissonian process, in the HMM model
the same process is modeled by a Gaussian process ( 34 ).
This approximation is accurate for high polymerase load-
ing rates, but may fail for lower rates of initiation. More-
ov er, in or der to compute the likelihood function, the HMM
method computes a sum over all the possible states of the
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Figure 7. Testing the effect of a change in the movie time resolution. ( A ) Simulated and reconstructed signal for different time resolutions, for a two state 
model, dataset D1 in Table 1 . The simulated transcription site signal is r epr esented in black. The same signal is resampled with dif ferent ra tes and then 
reconstructed by deconvolution. The reconstructed signal (after deconvolution and with different sampling rates) is r epr esented in r ed. ( B ) Histograms 
of the number of polymerases per analysed site for different time resolutions. ( C ) The reconstructed survival functions for different time resolutions. ( D ) 
Average logarithmic parametric reconstruction error for different time resolutions and kinetic parameters (dataset D1). ( E ) Average logarithmic error for 
dif ferent da tasets and time resolutions. 
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Figure 8. Robustness of the method against noise. All the simulations were performed using a 3-states model M 2 (Datasets D12-14 in Table 1 ). ( A ) Recon- 
structed signal (shown in red) obtained using deconvolution from noisy artificial data (shown in blue). The artificial signal without noise is shown in green. 
Noise x0 r epr esents the signal without any noise added to it and noise x1 is obtained by adding heteroscedastic noise to noise x0 equivalent to the one 
estimated from cultured human cells. noise x2 and x4 correspond to noise standard deviations two and four times larger, respecti v ely. ( B ) Parameters re- 
constructed by the pipeline vs the true parameters used to simulate the artificial data for model M 2 datasets D12–14 in Table 1 . ( C ) Logarithmic parametric 
reconstruction error D12–14 (left) Average uncertainty in the parameters (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

promoter at se v eral e xperimental time points spanning a
memory interval equal to the dwell time. Thus, the compu-
tation time of this method increases exponentially with the
dwell time and with the time resolution. An approximate
version of the HMM method ( 36 ) trades accuracy for speed
by considering only promoter states of large enough prob-
ability, for the computation of the likelihood function. 

Gi v en the difficulty of HMM in treating with high time
resolutions, we have cross compared the kinetic parameter
reconstruction error for se v eral methods, using various arti-
ficial datasets and time resolutions. For the comparison we
considered the two versions of BurstDECONV, the simple
and the mixed one, using only short high resolution movies
and both short and long movies, respecti v ely. All the other
methods were tested on short movies as they do not allow
to combine movies of different time scales. All the artifi-
cial short movies last 26 min but their time resolution varies
from 3.9 to 39 s. The HMM method was used in two ver-
sions: the ‘exact’ version implemented in ( 34 ) that explores
the full state combinatorics of the promoter states and the
‘burstInfer’ version implemented in ( 36 ) that explores a re-
duced number of states. The auto-correlation method is rep-
resented by its implementation in ( 33 ). This implementa-
tion considers that the polymerase loading is deterministic
with a known fixed rate (one polymerase e v ery six seconds
pr ecisely, corr esponding to our parameter k ini = 0.166 s −1 )
and fits only the switching rates of the random telegraph
model (corresponding to our parameters k 

+ and k 

−). We
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ave also tested inferring sim ultaneousl y all the parame- 
ers of the random telegraph model together with the poly- 
erase dwell time using the auto-correlation method de- 

cribed in ( 32 ). In this case the parameters k 

+ , k 

− and k ini 
an not be reliably reconstructed, but interestingly, we ob- 
ain stable estimates of the polymerase dwell time (see Ma- 
erials and Methods and Supplementary Table S1). 

The results of the method comparison in terms of accu- 
acy are shown in Figure 9 . They show that BurstDECONV 

s robust and can be applied to all the datasets and time res-
lutions. Because of combinatorial issues described above, 
MM method may fail in some cases (by memory overflow 

r execution timeout). 
Whene v er comparison was possible, for two-state 

atasets we found that the parameter reconstruction by 

urstDECONV is significantly more accurate than by the 
ther methods. 
Some three-state datasets (D9,12–14) have very small 

witching rates ( k 

+ or k 

− or both). In this case, the preci-
ion of BurstDECONV is limited by the length of the short 
ovie. Then, the simple deconvolution method can gener- 

te large errors and the ‘mixed’ version of BurstDECONV, 
hat combines short and long movies, is needed. Interest- 
ngly, the HMM method seems to be slightly less sensiti v e 
o the same phenomenon. Although large, the estimation er- 
ors of HMM are smaller than those of the simple BurstDE- 
ONV, for datasets D13 and D14 (Figure 9 ). Howe v er, in 

uch difficult cases, the ‘mixed’ version of BurstDECONV 

ignificantly supersedes in accuracy all the other methods. 

esting BurstDECONV using an enriched collection of 
atasets 

he datasets of Table 1 span a large par ameter r ange but
he parametric resolution is poor. In order to increase this 
 esolution, we generated mor e parameter sets by latin hy- 
ercube sampling. 
We generated 40 more short movie synthetic datasets 

orresponding to two states models. The parameter val- 
es where defined by latin hypercube sampling in linear (20 

atasets) and logarithmic (20 datasets) scales. 
We also set up 240 more datasets for three states mod- 

ls. These correspond to 60 parameter sets obtained by latin 

ypercube sampling in linear (30 datasets) and logarithmic 
30 datasets) scales. We doubled the number of parameter 
ets by including both M2 and M1 three state models with 

arameters corresponding to the same theoretical survival 
unction. Finally, the three states datasets were produced 

n two versions, simple (short movie) and mixed (short and 

ong movies). 
We have used BurstDECONV to reconstruct the param- 

ters of these extra 280 synthetic datasets that add to those 
lr eady pr esented in Table 1 . The parameter values for these
atasets can be found in the Supplementary Table S2. Fig- 
re 10 illustrates the result of these numerical experiments. 
The initia tion ra te parameter k ini is accurately recon- 

tructed for all models and datasets (Figure 10 A and C). 
ndeed, this parameter scales inversely with the signal am- 
litude and is robust with respect to signal sampling. The 

ack of robustness of k ini against calibration was illustrated 

n Figure 6 C. 
In contrast to k ini , the switching parameters can be in- 
ccurately reconstructed using the simple version of Burst- 
ECONV. We have identified two main sources of error. 
irst, the reconstruction error is large when the lifetimes of 

he ON and OFF sta tes are larger than the movie dura tion 

r, equivalentl y, w hen k 

+ or k 

− are smaller than the inverse 
f the short movie length. This effect is illustrated in Fig- 
re 10 A–D. Second, when the lifetime of one of the OFF 

tates becomes comparable to the interval between succes- 
i v e initiation e v ents (1 / k ini ) there is parametric uncertainty,
s a model with less states fits equally well in this case. This 
ffect, leading to large errors when k + 

1 or k + 

2 are large and 

lose to k ini is illustrated in Figure 10 B, D, F. 
As expected, the use of the mixed version of Burst- 
ECONV (short and long movies) allows the reconstruc- 

ion of very small switching parameters, corresponding to 

imescales larger than the length of the short movie (see Fig- 
re 10 E). By using the mixed version, the error due to large 

ifetimes of ON and OFF states can be avoided. 

ISCUSSION 

hile the de v elopment of imaging-based methods to mon- 
tor transcription in li v e cells and animals boomed over 
he last 20 years, the analytical frame wor ks e xtracting 

uantitati v e information from transcriptional bursting re- 
ained limited. Hence promoter switching was often mod- 

led using ad hoc burst definitions, or using two states ran- 
om telegraph model and rarely envisaging more complex 

odels ( 18–20 , 39 ). Two main methods, namely the auto- 
orrelation and the Hidden Markov Model (HMM) meth- 
ds were employed in analysing transcriptional bursting 

ata. Howe v er, there is no comparati v e benchmar king of 
he accuracy and robustness of these methods. 

Here we provide BurstDECONV, a novel signal decon- 
olution method able to retrieve single polymerase initia- 
ion e v ents from single cell transcription bursts and infer 
romoter states and their switching rates. We comparati v ely 

enchmark our method to the other two state of the art 
ethods. 
Our method is robust with respect to polymerase speed, 

ignal calibration, time resolution, movie duration, and 

oise in the signal. The method is precise for wide values 
f kinetic parameters of the transcription regulation pro- 
esses. By combining short and long movies, we are able 
o quantify processes with timescales from seconds to days. 
his extremely wide dynamic range was not accessible with 

he pre vious quantitati v e li v e cell transcription imaging ap- 
roaches. 
Thus, our method and tools are of interest in applica- 

ions where a precise description of rate-limiting steps gov- 
rning transcription dynamics is important: zygotic genome 
ctivation in model organisms, various aspects of gene ex- 
r ession r egulation in human cells and tissues in health 

nd disease, various studies of stochastic gene expression 

n prokaryotes and eukaryotes. Beyond transcription stud- 
es, they can be used for other applications where the signal 
an be deconvoluted into individual initiation e v ents, for in- 
tance in studies of translation. 

Another advantage of BurstDECONV resides in its abil- 
ty to directly bridge agnostic r epr esenta tions of da ta to 
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Figure 9. Parametric reconstruction accuracy of BurstDECONV vs. autocorrelation and HMM methods The bar plots on the left correspond to the 
parameter reconstruction errors for the four methods, BurstDECONV, cphmm, burstInfer (based on hmm) and Autocorrelation for datasets 1–5. These 
datasets correspond to a two state promoter model. The bar plots on the right depict the errors for BurstDECONV and for cphmm (datasets 7–9, 12–14 
(3-state models)). BurstDECONV mixed refers to the deconvolution method combining high and low resolution movies. The x-axis for the plots have 
different time resolution of the short movies and the y-axis, the average log error (base 10). BurstDECONV mixed used short movies of resolution 3 s and 
long movies of resolution 3 min. 



PAGE 19 OF 21 Nucleic Acids Research, 2023, Vol. 51, No. 16 e88 

Figure 10. Parametric reconstruction accuracy for an enriched collection of 297 synthetic da tasets. ( A ) Estima ted vs. true parameters for 45 datasets 
generated with two states models. ( B ) Error versus parameters (all 2-state datasets); the mean logarithmic error is large when k + or k − are small or when 
k + is close to k ini . ( C ) Estimated versus true parameters for three states models using the simple version of BurstDECONV. Only datasets with error < 1 
are shown (81 out of 126). ( D ) Error versus parameters (all 3-state datasets); similarly to 2-state models, the error is large for small k + i or k −i , i ∈ { 1, 2 } , or 
when k + 1 or k + 2 is close to k ini . ( E ) Estimated versus true parameters for three states models using the mixed version of BurstDECONV. Only datasets with 
error < 1 are shown (97 out of 126). ( F ) Error versus parameters (all 3-state datasets); the error is large when either k + 1 or k + 2 is close to k ini . 
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kinetic parameters of discrete state models of transcrip-
tion. This is not possible in the framework of the HMM
method, where each model has to be fitted separately using
a different likelihood function. The survival function used
in BurstDECONV conveys different information than the
auto-correlation function used in previous methods. This
renders the two methods complementary. BurstDECONV
can not determine the polymerase dwell time, but provides
accura te estima tes of the transition rate parameters. The au-
tocorrelation method can estimate the dwell time, but is im-
precise on the transition rates. 

BurstDECONV can be extended to consider more com-
plex transcriptional bursting models, with arbitrary num-
ber of states and transition schemes, or with multiple non-
resolvab le acti v e sites resulting, for instance, from sister
chromatids. 

In its current setting our method considers that transcrip-
tion sites are statistically equivalent. This assumption is
valid when there is limited spatial and temporal heterogene-
ity. Howe v er, a segmentation step could be easily added to
the image analysis in order to select statistically equivalent
sites in the case of spatial or temporal heterogeneity. This
is the case in a m ulticellular organism, w her e gene expr es-
sion is submitted to positional information like Drosophila
patterning instructed by gradients of morphogens. 

The output of BurstDECONV is a set of promoter states
and the transition rates between these states. The quan-
titati v e frame wor k proposed in this study re v eals the key
bottlenecks responsible for the promoter switching dynam-
ics. Moreover, by informing on the timescale of each rate-
limiting step, BurstDECONV provides a hint on the nature
of these rate limiting steps. We foresee that with the de v elop-
ment of novel perturbation methods (as for example opto-
genetics), the molecular characterization of these steps will
be more and more facilitated. 

In addition, our stochastic models of transcription dy-
namics can be readily used to test mechanistic hypotheses.
For example, by a ppl ying BurstDECONV to two biologi-
cal systems, HIV-1 transcription in Hela cells and zygotic
transcription in Drosophila embryos, we came to the con-
clusion that a classical view of polymerase pausing may not
be accurate. Indeed, a scenario where all polymerase would
e xperience a discernab le paused sta te was not compa tible
with our data. This analysis led us to propose a new view of
pausing, a non-obligatory pausing model, where only a sub-
set of polymerase would experience stable pausing, whereas
other initiated polymerases would not be kinetically limited
by such long pauses ( 19 , 20 ). Thus, monitoring transcription
in li v e cells and employing rigorous analytical frame wor k,
could in some cases affect our classical view of the tran-
scription process, often raised from biochemical in vitro and
static approaches. 

DA T A A V AILABILITY 

The artificial data as well as the code used for bench-
marking the pipeline are available on Zenodo at
https://zenodo.org/record/7438759 . BurstDECONV
source code is available in both MATLAB and Python
3 versions under 3-clause BSD open license. BurstDE-
CONV is also available as a Graphical User Interface.
The source codes are available through Github at
https://github.com/oradules/BurstDECONV . For in-
creased portability, we have created a Docker container
for the Python notebook. Instructions for using this
container can be found in the same Github reposi-
tory. The GUI and the user manual are available on
Zenodo at https://zenodo.org/record/7443044 . Burst-
DECONV does not include the image analysis part of
the pipeline. This can be performed with MS2-Quant
https://bitbucket.org/muellerflorian/ms2 quant/src/master/ 
for cell line movies, segment-track https://github.com/ant- 
trullo/SegmentTrack v4.0 for Drosophila movies, or with
any other equivalent software. 

SUPPLEMENT ARY DA T A 

Supplementary Data are available at NAR Online. 
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