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Abstract: TRIM17 is a member of the TRIM family, a large class of RING-containing E3 ubiquitin-
ligases. It is expressed at low levels in adult tissues, except in testis and in some brain regions.
However, it can be highly induced in stress conditions which makes it a putative stress sensor
required for the triggering of key cellular responses. As most TRIM members, TRIM17 can act
as an E3 ubiquitin-ligase and promote the degradation by the proteasome of substrates such as
the antiapoptotic protein MCL1. Intriguingly, TRIM17 can also prevent the ubiquitination of other
proteins and stabilize them, by binding to other TRIM proteins and inhibiting their E3 ubiquitin-ligase
activity. This duality of action confers several pivotal roles to TRIM17 in crucial cellular processes
such as apoptosis, autophagy or cell division, but also in pathological conditions as diverse as
Parkinson’s disease or cancer. Here, in addition to recent data that endorse this duality, we review
what is currently known from public databases and the literature about TRIM17 gene regulation and
expression, TRIM17 protein structure and interactions, as well as its involvement in cell physiology
and human disorders.

Keywords: TRIM17; ubiquitination; proteolysis; apoptosis; autophagy; mitosis; Parkinson’s disease;
autism; cancer

1. Introduction
The tripartite motif (TRIM) family represents the largest subfamily of RING-containing

E3 ubiquitin-ligases [1]. In humans, it includes more than 80 members [2–4]. TRIM proteins
are characterized by the presence of a highly conserved tripartite motif at the N-terminus
that is composed of a RING domain, one or two B-boxes (B1 and B2) and a coiled-coil (CC)
domain. It is followed by a highly variable carboxy-terminal domain, which categorizes
the different TRIMs into 12 distinct subgroups (C-I to C-XII) [1] (Figure 1). The subgroup
C-IV is characterized by a PRY-SPRY domain that represents the most common C-terminal
domain, accounting for about half of all known TRIMs [2,5,6]. The RING domain confers
to TRIM proteins their E3 ligase activity [7], the other conserved domains being mostly
involved in protein–protein interactions. The specific combination and order of the different
domains within the tripartite motif, but also the spacing between each domain, is highly
conserved. This suggests that the tripartite motif has been selectively maintained to
perform specialized functions, such as ubiquitination, and represents a functional structure
rather than a set of separate modules [1,8].

Ubiquitination involves the sequential action of an E1 ubiquitin-activating enzyme,
an E2 ubiquitin-conjugating enzyme and an E3 ubiquitin protein ligase which specifically
recognizes the substrate, binds an E2 enzyme and facilitates the covalent binding of
ubiquitin (a 76-residue polypeptide highly conserved throughout evolution) mainly to a
specific Lys residue of the substrate protein [9]. Ubiquitin itself can be ubiquitinated on
different residues (K6, K11, K27, K29, K33, K48 and K63 or the N-terminal methionine
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residue) to form ubiquitin chains with many different conformations. Depending on
the number of the substrate Lys residues that are modified, the number of ubiquitin
molecules that are conjugated and the conformation of the chains formed, this cascade
of reactions results in mono-, multi- or poly-ubiquitination that determine the fate of the
substrates [10]. For example, K48-polyubiquitinated substrates are generally degraded
by the proteasome [11], while K63-polyubiquitinated or monoubiquitinated substrates
are rather eliminated by autophagy [12]. TRIM proteins, therefore, contribute to the
efficient removal of short-lived or misfolded proteins and protein aggregates, mainly by
the ubiquitin–proteasome system (UPS) but also by autophagy, and may participate in the
crosstalk between these two systems [13].

TRIM17 (Tripartite motif-containing 17) also known as RNF16 (Ring Finger protein 16) or
terf (testis RING finger protein) is part of the Class C-IV subfamily of TRIMs [1] (Figure 1).
As such, TRIM17 contains a PRY-SPRY domain at its C-terminal extremity. TRIM17 was
initially isolated from rat and human testis cDNA libraries in 1998 [14]. Both cDNAs
encode a 477 amino acids protein that has been subsequently found to be expressed at
low levels in various tissues [15]. This weak expression, which makes it difficult to detect
with antibodies, may explain why TRIM17 was not studied for a long time. The E3
ubiquitin-ligase activity of TRIM17 was first demonstrated in 2009 [15] and its first cellular
function was described in 2010, when we showed that mouse Trim17 is both necessary and
sufficient for neuronal apoptosis [16]. Subsequently, we and others have identified different
substrates and partners of TRIM17 and provided evidence that TRIM17 plays an important
role in key cellular processes. Although it is low in most situations, TRIM17 expression can
be dramatically induced following different cellular stresses, giving it the role of a sentinel
ready to trigger the appropriate cellular response [15,17,18]. Here, we review the current
knowledge on TRIM17 gene regulation, substrates and partners of the TRIM17 protein, its
cellular significance and the emerging role of TRIM17 in several human diseases.
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2. Structure and Regulation of the TRIM17 Gene
2.1. Structure of the TRIM17 Gene

Many TRIM genes exhibit the same genomic organization, with 6–7 exons spanning a
10 kb region [8]. The human TRIM17 gene is located on 1q42.13 and spans less than 10 kb
of the genome (University of California Santa Cruz (UCSC) Genome browser, genome
build GRCh38/hg38, December 2013). In both humans and rodents, the gene is composed
of 7 coding exons. In humans, its transcription seems to be driven by a single promoter
and an alternatively spliced exon is present downstream the sixth coding exon (Figure 2).
This could explain the existence of several TRIM17 transcript isoforms that involve not
only the 30 of the gene and several polyadenylation signals but also the coding region.
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Figure 2. (a) Screenshot from NCBI’s Genome Data Viewer. The data track MANE Project (release v0.93) shows TRIM17
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GRCh38.p13 primary assembly; (b) gene model (ENSG00000162931.11) and TRIM17 mRNA isoforms (from gtexportal.org,
21 February 2021, Source: HGNC Symbol; Acc: HGNC:13430).

In both humans and rodents, TRIM17 is located close to TRIM11 (Figure 2). It is
noteworthy that TRIM11 also belongs to the subgroup C-IV of TRIM proteins and is the
closest paralog gene of TRIM17 [21] (data from ensembl.org, v.103 21 February 2021), with
46% amino acid sequence identity. These two genes probably derive from an ancestral
gene duplication, TRIM17 orthologues appearing 473 MYA ago in Gnathostomata and
TRIM11 orthologues about 158 MYA ago in Marsupials and Placental mammals [21] (data
from ensembl.org, v.103 21 February 2021). However, TRIM11 and TRIM17 do not seem
to share the same mechanisms of regulation. Indeed, according to data from GTEx Portal
(GTEx Analysis Release V8, dbGaP Accession phs000424.v8.p2), TRIM11 is more widely
and highly expressed than TRIM17, although both have maximum expression in the
cerebellum [17].

2.2. Transcription Factors and Regulatory Elements of the TRIM17 Gene
The mechanisms and factors regulating TRIM17 transcription are largely unknown.

The transcription factor NANOG was shown to downregulate TRIM17 through upreg-
ulation of HDAC1 expression leading to HDAC1-mediated epigenetic repression of the



Cells 2021, 10, 1235 4 of 28

TRIM17 promoter. Therefore, TRIM17 expression seems to be regulated by HDAC1-
mediated histone deacetylation [22].

We also found that NFATc3 and c-Jun transcription factors cooperate to induce Trim17
transcription in neuronal cells [23]. Indeed, shRNA against NFATc3 and inhibition of
c-Jun significantly reduced Trim17 mRNA levels in primary cerebellar granule neurons
(CGNs) following apoptosis induction. In contrast, overexpression of NFATc3 induced
Trim17 expression in mouse neuroblastoma Neuro2A cells. Furthermore, analysis of the
Trim17 promoter sequences revealed a region around the transcription start site containing
two conserved AP-1 binding sites and one conserved composite NFAT:AP-1 element. We
confirmed that c-Jun and NFATc3 indeed bind this regulatory region using chromatin
immunoprecipitation (ChIP) assays. Interestingly, this binding strongly increased during
early neuronal apoptosis [23].

In addition to these two studies, ChIP-seq data analysis from the ENCODE project
(https://www.encodeproject.org, 21 February 2021) reveals the binding of several tran-
scription factors, such as SUZ12, EZH2, AGO2 or RBM39, to regulatory elements in the
TRIM17 locus [24] (Bernstein and Snyder labs.). Indeed, chromatin immunoprecipitation
using antibodies specific to these transcription factors, followed by sequencing of the
precipitated DNA (ChIP-seq), indicate that they bind to the promoter region of TRIM17,
around the transcription start site, delineated by the presence of CpG islands and spe-
cific histone modifications: H3K27Ac (acetylation of lysine 27 of the H3 histone protein),
H3K4me1 (mono-methylation of lysine 4 of the H3 histone protein) and H3K4Me3 [24]
(tri-methylation of lysine 4 of the H3 histone protein) (ENCODE 3 Nov 2018, Bernstein lab).
These specific histone marks also suggest the presence of several cis-regulatory elements in
the 50 regions of the TRIM17 gene, to which additional transcription factors can bind, such
as STAT5 and ZNF592 [24] (Richard Myers, HAIB lab. and Michael Snyder, Stanford lab.).
However, further studies are needed to determine whether these transcription factors and
regulatory elements are indeed involved in TRIM17 regulation and to elucidate the cellular
context in which they operate.

2.3. Induction of TRIM17 Expression and Regulatory Pathways: TRIM17 as A Stress Response Gene
As with almost half of the TRIM proteins, basal TRIM17 expression seems to be

low. According to the GTEx Portal (GTEx Analysis Release V8), TRIM17 expression
levels are generally less than 5 TPM (transcripts per million), except in a few tissues such
as testis (Figure 3) [17,18,25]. Indeed, human TRIM17 cDNA was first isolated from a
testis library and it was originally designated as testis RING finger protein (terf) because
the corresponding transcripts were almost exclusively detected in human and rat testis
using Northern blot analysis [14]. Apart from testis, TRIM17 has been found significantly
expressed in spleen and thymus [15,17,18] and to a lesser extent in liver, and kidney [15].
Trim17 has also been reported to be ubiquitously expressed during mouse embryonic
development (Reymond et al., 2001). Moreover, public databases and experimental data
report a significant expression in some parts of the brain, in particular in the cerebellum
(GTEx Analysis Release V8) (Figure 3) and in neurons of the substantia nigra [17]. However,
it is possible that TRIM17 is ubiquitously expressed, at a very low level in most tissues, and
that its expression is induced only in specific conditions.

Indeed, converging data indicate that TRIM17 expression is induced by cellular stress.
We initially identified Trim17 as one of the most highly upregulated genes in primary
cultures of mouse cerebellar granule neurons (CGNs) undergoing apoptosis following
serum and KCl deprivation [16,25]. This well characterized in vitro model recapitulates
the massive neuronal apoptosis that occurs during post-natal cerebellum development.
Indeed, in the developing brain, immature neurons are produced in excess. Neurons
that have not established the right connections are eliminated by apoptosis during the
perinatal period to allow the formation of optimal neuronal networks [26]. CGNs require
neurotrophic factors and stimulation from excitatory afferent neurons to survive in vivo.
This can be mimicked in vitro by adding serum and a depolarizing concentration of KCl,

https://www.encodeproject.org
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the withdrawal of which triggers apoptosis. We showed that Trim17 is induced in serum
and KCl-deprived CGNs, both at the mRNA and protein levels [16]. At the mRNA level,
this induction can be enormous, reaching an increase factor of more than 50. Consistently,
we observed that Trim17 protein is specifically expressed in apoptotic neurons, in the
mouse cerebellum during postnatal development, its peak of expression coinciding with
the peak of naturally occurring neuronal apoptosis [16]. Interestingly, Trim17 induction
seems to be specific to transcription-dependent neuronal apoptosis induced by survival
factor deprivation. Indeed, Trim17 levels are also increased in rat sympathetic neurons from
the superior cervical ganglion (SCG) after NGF (neuronal growth factor) withdrawal and in
motoneurons from mouse spinal cord dying in the absence of neurotrophic factors. In these
two models, as well as in deprived CGNs, apoptosis can be prevented by the inhibition
of transcription. However, Trim17 is not induced during CGN apoptosis triggered by
low concentrations of glutamate, which is transcription-independent [16]. Induction of
Trim17 following survival factor deprivation is triggered by two major signaling pathways
associated with neuronal apoptosis [27,28]: activation of the proapoptotic kinase GSK3 due
to the inhibition of the survival PI3K/Akt pathway, and activation of the JNK/c-Jun stress
signaling pathway. Indeed, pharmacological inhibition of PI3K in survival conditions is
enough to increase Trim17 mRNA levels, whereas inhibition of GSK3 or JNK prevents the
increase in Trim17 expression triggered by serum and KCl deprivation in CGNs [16,23].
These data therefore suggest that Trim17 is one the target genes of stress signaling pathways
whose transcription is necessary to trigger neuronal apoptosis.
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While survival factor deprivation mimics the physiological conditions encountered
by neurons during brain development, other stresses such as exposure to drugs or envi-
ronmental components can also induce abnormal TRIM17 expressions, which may favor
human disorders. For example, Di-(2-ethylhexyl) phthalate (DEHP), which is widely found
in plastics and is known for its reproductive toxicity and teratogenic effects, has been
shown to activate TRIM17 protein expression through PPAR� (peroxisome proliferator-
activated receptor �) that plays a role in central nervous system (CNS) development [29].

https://gtexportal.org/home/
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This TRIM17 expression leads to caspase-3 activation and apoptosis [29]. This finding
may account for the CNS toxicity of DEHP and implies that DEHP may impair fetal
brain development. Consistent with stress-induced expression of TRIM17, the mRNA
level of Trim17 is increased in the midbrain of mice treated with the neurotoxin MPTP
(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), a largely used animal model of Parkinson’s
disease [30].

Viral or bacterial infections during development may also induce TRIM17 in the brain.
For example, TRIM17 expression could be increased following inflammation-induced white
matter injury (WMI) in preterm infants, which is associated with neurocognitive impair-
ment and increased risk of neuropsychiatric disorders in adulthood. Indeed, in a robust
model of WMI based on the injection of lipopolysaccharide (LPS) in the corpus callosum of
3-day-old (P3) rat pups, genomic DNA analyses revealed that postnatal inflammatory ex-
posure causes hypomethylation of Trim17 [31]. This epigenetic modification, which should
result in increased Trim17 expression, is still present 3 weeks after the injury. Nevertheless,
additional studies are required to determine the role of Trim17 in this disorder.

Taken together, current data indicate that TRIM17 is widely expressed at low levels
but is induced in few tissues during physiological/developmental events and can be
dramatically activated after drugs or environmental agent exposures. In many situations,
this increase appears to be very strong and transient. TRIM17 may therefore serve as a
sensor to trigger cellular stress responses. The identification of the transcription factors
and regulatory elements that control its expression is all the more crucial.

3. TRIM17 Protein Structure and Molecular Function
3.1. TRIM17 Domain Composition and Species Conservation

TRIM proteins are metazoan-specific and have been identified in many species al-
though their number is greatly increased in vertebrates [8]. As with other TRIM pro-
teins, TRIM17 is characterized by the N-terminal tripartite motif consisting of a RING
domain followed by one type 2 B-Box and a coiled-coil (CC) domain. TRIM17 has in its
C-terminal part, a PRY-SPRY domain. The RING domain is a zinc-binding motif com-
posed of 40–60 amino acids. It plays a critical role in the ubiquitination process by binding
to E2 ubiquitin conjugating enzymes and by promoting the transfer of ubiquitin to the
substrate [32] (Figure 4a). It can also mediate substrate conjugation with ubiquitin-like
proteins such as SUMO [33] or NEDD8 [34]. Another key feature of the RING domain is its
participation in homo- and hetero-dimerization [35,36]. The B-Box domains are zinc-finger
domains that typically contain cysteine and histidine residues arranged in one of several
motifs which are relatively conserved (Figure 4b). B-Box domains are a crucial feature of
TRIM proteins, but they can be found in other protein families. The hyperhelical coiled-coil
motifs can be found in numerous proteins where they have diverse functions [37]. The
coiled-coil motif of TRIM proteins is around 100 residues long and is often broken up into
two or three separate coiled-coil motifs (Figure 4c). A ‘rope-like structure’ stabilized by
hydrophobic interactions is formed by alpha helices that are wound together in coiled-coil
domains. Notably, the primary sequence of this region is not conserved [38]. The coiled-coil
domain is mainly involved in homo- and hetero-interactions. It promotes the formation
of high molecular weight complexes of TRIMs that define subcellular niches [39]. The
PRY-SPRY domain represents the most common C-terminal domain, accounting for about
half of all known TRIM proteins [2,5,6] (Figure 4d).

From an evolutionarily point of view, TRIM17 belongs to group II of the TRIM family,
which is younger and faster evolving than group I [3] possibly because they are implicated
in the innate immune response [3]. This group II is composed of 34 proteins (31 TRIM and
3 TRIM-like proteins), which possess only the B-box2 domain and are mostly organized as
RING-B2-CC-SPRY proteins [3]. The TRIM genes of this group are present only in verte-
brates, however, they are generally poorly conserved even within the same phylogenetic
order where they play species-specific roles [3]. TRIM17 is present in most mammal species
since 95 of the 108 placental mammal species have a TRIM17 orthologue. However, in
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contrast to other TRIM proteins belonging to the same subgroup such as TRIM39, TRIM17
is not present in reptiles, birds and fishes [21] (data from ensembl.org, 21 February 2021,
release 103). Human TRIM17 shares 73%, 75% and 75% amino acid identities with its
orthologues in rodents, cows and dogs, respectively [3], with variation rate depending on
the domain. For example, the RING finger domain shares 84% identity while the B-box2
domain, the coiled-coil domain and the C-terminal domain share 78%, 60% and 80% iden-
tity, respectively, between human and rat TRIM17 [14]. These high homologies suggest
the important role of these domains in TRIM17. Analysis of TRIM17 protein sequence
conservation between different species highlights the amino acids that are essential for the
structure and function of each domain, but also the regions that are important for TRIM17
specificity compared to other TRIM proteins (Figure 4, residues in green).
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3.2. TRIM17 Isoforms
The full length TRIM17 protein comprises 477 amino acids both in humans and rat,

with a molecular weight around 54.9 kDa in rat and 54.3 kDa in humans [14]. As in all
TRIM genes, the tripartite motif of TRIM17 is encoded by a single exon, corroborating
the evolution of this module as a single entity [8]. In humans, eight alternatively spliced
transcript variants have been found for TRIM17 (Figure 2b), resulting in six different
lengths of proteins [21] (data from ensembl.org, v.103 21 February 2021), which vary in
their C-terminus (Figure 5). According to public databases, the full length TRIM17 protein
is encoded by three different transcripts (Figure 5), whereas truncated proteins with 343,
267, 175, 50 and 30 amino acids are provided by five different transcripts [21] (data from
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ensembl.org, v.103 21 February 2021) (Figure 5). Of these isoforms, the existence of only the
full length, 343 and 267 amino acids proteins has been demonstrated experimentally [40]
(Figure 5a).
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The different TRIM17 transcripts seem to share a similar tissue expression profile with
preferential expression in testis and brain (Figure 5b) (GTEx Analysis Release V8 (dbGaP Ac-
cession phs000424.v8.p2). According to data on GTEXportal, the human ENST00000456946
isoform, which codes for a 343 amino acids protein lacking its PRY-SPRY domain, repre-
sents the most expressed transcript in cerebellum, accounting for almost 30–40% of all
TRIM17 transcripts, whereas in testis it accounts for less than 25% (GTEx Analysis Release
V8 (dbGaP Accession phs000424.v8.p2, Figure 5b). However, the effective overrepresen-
tation of this isoform, compared to the full-length protein, remains to be experimentally
confirmed. The same TRIM17 isoform, lacking the PRY-SPRY domain, is also expressed
in mouse.

The transcripts of other members of the TRIM family are also frequently alternatively
spliced, producing different protein isoforms that often diverge at their C-terminal end [39].
Some of these TRIM isoforms exhibit different biochemical properties and activities. This
has been well documented for TRIM19 and TRIM5alpha [41,42]. Furthermore, the con-
comitant, potentially tissue-specific presence of various isoforms of the same TRIM gene
may, in some cases, involve cross-regulatory mechanisms. For example, the tripartite motif
of TRIM28 has been shown to interact with the full-length protein, thereby generating a
complex that is unable to bind its partner KRAB [43]. In the case of TRIM17, the possible
effect of different isoforms has never been addressed and can only be speculated.
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3.3. Secondary and Higher Order Structures of TRIM17
While the C-terminal domain generally mediates target recognition and specificity

of TRIM proteins [7,44] and the RING domain confers E3 ubiquitin-ligase activity, the
B-box and especially the coiled-coil domains are involved in the formation of homo- or
hetero-dimers or multimers [44–47].

3.3.1. Monomer 3D Structure Model
Although over 400 RING motifs have been identified in the human genome and over

200 different three-dimensional (3D) structures are available in protein databases, relatively
few structures have been resolved for TRIM proteins. These involve mainly NMR derived
structures for certain domains of C-IV TRIMs. This is the case for B-Box, RING and PRY-
SPRY of TRIM5alpha, the B-Boxes of TRIM21, TRIM39 and TRIM41 and the RING domains
of TRIM34 and TRIM39 (PDB ID: 2YRG, 2ECV, 2LM3, 5JPX, 2DIF, 2EGM, 2EGP and 2ECJ,
respectively) [48,49]. The 3D structure of TRIM17 has not been determined yet. However,
the predicted monomeric 3D structure of human TRIM17 (UniProtKB ID: Q9Y577) can be
generated in silico with SWISSModel (swissmodel.expasy.org, 25 February 2021) based
on known structures and on the sequence homologies with the tripartite motif of TRIM28
(PDB ID: 6QAJ) [50] and the PRY-SPRY domain of TRIM20/PYRIN (PDB ID: 2WL1) [51]
with which TRIM17 shares 18% and 35% sequence identities, respectively (Figure 6a).
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3.3.2. Homodimerization of TRIM17
The ability of TRIM proteins to homo-interact through their coiled-coil region is one of

their main structural features [39]. Using interaction mating technique and in vitro/and or
in vivo coimmunoprecipitation techniques, Reymond et al. confirmed homo-interactions
of TRIM1, 3, 5, 6, 8, 9, 10, 11, 18, 21, 23, 24, 25, 26, 27, 29, 30, 31, and 32. Although,
we have shown that TRIM17 can also homo-interact [30], the domains that are involved
in this process are still unknown and it is not clear whether this homo-interaction is
required for its substrate binding or E3 ubiquitin-ligase activity. Several studies have
reported that the tripartite motifs of TRIM5, TRIM25, TRIM28 and TRIM69 form antiparallel
dimers [46,47,49,52,53]. If this structure is shared by all TRIM proteins, the predicted
dimerization model for TRIM17 can be established from existing 3D homodimer structures
of other TRIM proteins such as TRIM20/PYRIN and TRIM28 (from Swiss Model browser)
(Figure 6b).
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3.3.3. Multimerization
Interestingly, for several TRIM members, higher molecular weight homocomplexes,

compatible with the presence of more than two TRIM molecules, have also been ob-
served [50,52–56]. These oligomers require the tripartite motif, the antiparallel structure of
dimeric coiled-coil domains locating RING domains at opposite ends of the molecule and
leading to RING interaction with other dimers to form higher order TRIM complexes [57].
Importantly, homo-multimerization has been suggested to be crucial for the function of
several TRIM proteins, such as TRIM5alpha, PML or TRIM28 [50,54,55]. Notably, several
studies have shown that homo-oligomerization of TRIM5alpha, TRIM25 or TRIM32 in-
creases their E3 ubiquitin ligase activity [45,58,59]. This property to form dimers, tetramers
and higher order structures could be conserved across the TRIM family. However, to date,
no study has examined whether TRIM17 forms structures larger than dimers, such as
trimers or hexamers, whether these structures are required for its functions and how this
may impact its E3 ubiquitin ligase activity.

3.4. Hetero-Interactions of TRIM17 with Other TRIM Proteins
Many TRIM proteins have been shown to interact with other members of the family.

For example, TRIM21 interacts with TRIM5alpha, leading to the ubiquitination and degra-
dation of the latter in HEK293 cells [60]. This E3–substrate relationship between two TRIM
proteins might be involved in other TRIM hetero-interactions either reported or postulated,
such as those involving TRIM5alpha and a group of TRIM proteins (TRIM4, 6, 22, 27, and
34) that interestingly show colocalization within cytoplasmic bodies [61].

Many studies have reported interactions between TRIM17 and other TRIM proteins,
especially with those containing a PRY-SPRY domain: TRIM39 [62–66], TRIM41 [30,64,67],
TRIM5alpha and TRIM22 [68]; but also with members of other TRIM subgroups such as
TRIM28 [69] and the RING-less protein TRIM44 [15,70] (Figure 7). Although many of
these interactions have been identified in high throughput screens, a few have resulted
from low-throughput focused studies that sought to elucidate their functional role. For
example, TRIM44 has been found to bind TRIM17 in a yeast two-hybrid assay (Y2H) using
the tripartite motif of TRIM17 as a bait to screen a prostate/breast cancer cDNA library [15].
In this study, TRIM44 was also shown to reduce the poly-ubiquitination of TRIM17, and to
prevent its proteasomal degradation. This effect was probably mediated by the N-terminal
region of TRIM44 that contains a zinc-finger domain found in ubiquitin hydrolases (ZF
UBP) and ubiquitin specific proteases (USPs) [15]. In another Y2H screen, we identified
TRIM41 as a putative partner of TRIM17, and the ability of the two proteins to interact
with each other was confirmed by coimmunoprecipitation and proximity ligation assay
(PLA) [30]. We have also characterized the interactions between TRIM17 and TRIM28 [69]
and TRIM39 [65] by PLA and coimmunoprecipitation of both ectopically expressed and
endogenous proteins. Importantly, in these three studies, TRIM17 appeared to inhibit
the E3 ubiquitin ligase activities of TRIM28, TRIM39 and TRIM41 and the proteasomal
degradation of their respective substrates [30,65,69]. Further investigations are needed
to determine whether this inhibitory effect is a specific feature of TRIM17 and whether
interaction of TRIM17 with other TRIM partners, such as TRIM5alpha and TRIM22, results
in a similar outcome.

3.5. Ubiquitin Ligase Activity of TRIM17 and Interactions with E2 Enzymes
In ubiquitination, the specificity of the reaction is provided by the E3 enzymes that

recognize the substrates, while the E2/E3 combinations determine the topology and length
of ubiquitin chains [71]. While the genome has about 600 E3 coding genes, 35–40 genes
encode putative E2 proteins. A direct interaction between E2 and E3 enzymes is required
for the ubiquitin ligase reaction. We and others have demonstrated the E3 ubiquitin-ligase
activity of TRIM7 by showing that both human and mouse TRIM17 can auto-ubiquitinate
in vitro in the presence of specific E2 enzymes: UBE2E1, UBE2D2 and UBE2D3 [15,16]. In
contrast to human TRIM17, which preferentially cooperates with UBE2E1 to induce poly-
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ubiquitination [15], mouse Trim17 also acts efficiently with the Ube2d2 and Ube2d3 and
generates mostly mono-ubiquitination with Ube2e1. We identified Mcl1 as a substrate of
Trim17 by showing that Trim17 can ubiquitinate recombinant Mcl1 in vitro in the presence
of Ube2d2 and that Trim17 is involved in the ubiquitination of Mcl1 in neurons [72]. Then,
TRIM17 has also been shown to induce the degradation of the kinetochore protein ZWINT
by the UPS [73].
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Different studies aiming at identifying E2/RING interactions [74,75] and more specifi-
cally E2/TRIM combination revealed a general preference of TRIM proteins for the D and E
classes of E2 enzymes [76] (UBE2D and UBE2E, respectively). As a rule, TRIM17 has been
shown to interact with more than one E2 enzyme, each of which can bind several other E3
ubiquitin ligases [64,74,76] (Figure 7). As mentioned above, TRIM17 can interact with sev-
eral other TRIM family members. However, not all of these partners share exactly the same
preference for E2 enzymes (Figure 7). Interestingly, while UBE2D2 appears to be a common
partner for all TRIM17-binding TRIM proteins (with the exception of TRIM44 which lacks
a RING domain), some E2 enzymes may be specific to certain dimers. Since binding to the
correct E2 enzyme is a prerequisite for their E3 ubiquitin ligase activity, these differences
in the E2 interaction profiles of TRIM17 partners could represent a supplementary level
of regulation.

It will be very interesting in future studies to identify new substrates of TRIM17 and,
for each of them, to describe their E2 specificities and ubiquitin chain topology. This may
indeed reveal that TRIM17 exerts pleiotropic effects in cells. Furthermore, although not yet
well understood, the ability of TRIM17 to form multimers suggests that the concomitant
presence of different isoforms such as shorter forms lacking C-terminal domain, within the
same cell may have important functional consequences.
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3.6. Inhibition of Other TRIMs by TRIM17
In searching for new substrates of TRIM17, we unexpectedly found that TRIM17

inhibited rather than mediated the ubiquitination of certain proteins identified as its
binding partners. It appeared that this effect was due to the inhibition of another E3
ubiquitin-ligase of the TRIM family. Indeed, we have shown in three independent studies
that TRIM17 inhibits the ubiquitination and degradation (i) of the transcription factor
ZSCAN21 mediated by TRIM41 [30], (ii) of the antiapoptotic protein BCL2A1 mediated
by TRIM28 [69] and (iii) of the transcription factor NFATc3 mediated by TRIM39 [65].
Therefore, our current knowledge of the molecular function of TRIM17 suggests that it acts
as much by inhibiting ubiquitination as by promoting it. The inhibitory effect of TRIM17
could result from several mechanisms that are not mutually exclusive.

First, TRIM17 could directly inhibit other TRIM proteins by forming inactive hetero-
oligomers at the expense of homo-oligomerization which has been suggested to be nec-
essary for the E3 ubiquitin ligase activity of TRIM proteins [45,58,59]. Indeed, TRIM17
physically interacts with TRIM41, TRIM28 and TRIM39 [30,65,69]. Formation of these
hetero-dimers or hetero-multimers with TRIM17 may inhibit the intrinsic E3 ubiquitin-
ligase activity of its TRIM partner, possibly by preventing the binding of the E2 enzyme.
Indeed, we observed that TRIM17 prevents the auto ubiquitination of purified recombinant
TRIM39 and TRIM41 in vitro [30,65]. Second, TRIM17 could prevent the binding of its
TRIM partners to their respective substrates. Indeed, we have shown that TRIM17 reduces
the interaction between TRIM41, TRIM28, TRIM39 and their respective substrates, as as-
sessed by both coimmunoprecipitation of ectopically expressed proteins and PLA with
endogenous proteins [30,65,69]. In the three cases, TRIM17 appeared to bind both the TRIM
E3 ubiquitin-ligase and its substrate. Therefore, TRIM17 could reduce the TRIM/substrate
interaction either by directly binding to the substrate in a competitive manner, or because
hetero-dimer formation impedes the accessibility of the substrate to the TRIM partner.
Further experiments are required to determine the structural determinants of the inhibitory
effect of TRIM17 on other TRIM proteins. Nevertheless, it is unlikely that TRIM17 inhibits
the ubiquitination of the substrates of its TRIM partners by associating with a deubiquiti-
nating enzyme (DUB), as shown for other TRIM proteins [77,78]. Indeed, TRIM17 is able to
inhibit the in vitro auto-ubiquitination of TRIM41 and the ubiquitination of NFATc3 medi-
ated by TRIM39, in a completely acellular medium in the absence of any DUB [30,65]. It is
also clear that TRIM17 does not inhibit its TRIM partners by inducing their ubiquitination
and subsequent degradation because TRIM17 rather decreases the ubiquitination levels
of TRIM39 and TRIM41 both in vitro and in cells [30,65]. Moreover, TRIM39 reciprocally
decreases the in vitro auto-ubiquitination of TRIM17, further suggesting that TRIM17 and
TRIM39 form inactive hetero-dimers or hetero-multimers, in which the E3 ubiquitin-ligase
activity of the two partners is inhibited.

Taken together, existing data about the molecular function of TRIM17 clearly indicate
that it is an E3 ubiquitin-ligase that is able to promote its own ubiquitination as well as the
ubiquitination of specific substrates. However, TRIM17 is also able to inhibit the ubiquiti-
nation of specific proteins mediated by other TRIM protein, by binding both the substrate
and its E3 ubiquitin-ligase. This intriguing feature is certainly related to the propensity of
TRIM proteins to hetero-interact. A similar effect was reported for TRIM24 which inhibits
the degradation of dysbindin induced by TRIM32 in cardiomyocytes [79]. Further studies
will determine whether this kind of function is a general characteristic of TRIM proteins
and whether TRIM17 can stabilize other substrates by acting on additional TRIM proteins.
However, this duality, whereby TRIM17 can promote or inhibit the ubiquitination and
degradation of specific proteins depending on the cellular context, already appears to be
crucial for its cellular functions, as discussed below.
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4. Cellular Functions of TRIM17
Although only a few substrates and partners have been identified for TRIM17 so far,

the impact of TRIM17 on these proteins places it as an important regulator in key cellular
processes. Whether TRIM17 induces or inhibits the ubiquitination of the proteins with
which it interacts, its cellular functions, which we review below, depend directly on the
nature of its substrates and partners (Figure 8).
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4.1. Regulation of Transcription Factors
TRIM17 has an impact on transcriptional regulation by modulating the ubiquitination

and degradation of transcription factors such as NFATc3 and ZSCAN21 but also by directly
inhibiting the activity of NFATc3 and NFATc4 [23,30,65].

4.1.1. NFATc3 and NFATc4
The NFAT (Nuclear Factor of Activated T cells) family comprises four calcium/calcineurin-

dependent transcription factors that are encoded by four closely related genes [80,81]. These
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NFAT members are normally found in the cytoplasm in a hyperphosphorylated and
inactive state. Upon an increase in intracellular calcium, they are dephosphorylated by
the calcium/calmodulin-dependent protein phosphatase calcineurin which triggers their
nuclear import and activation [80–82]. Once inside the nucleus, NFATs cooperate with
multiple transcriptional partners, including activator protein 1 (AP-1), to regulate gene
expression [83].

TRIM17 provides an additional level of regulation to these mechanisms by binding
to NFATs and preventing their nuclear translocation [23]. Indeed, we found that Trim17
interacts with both NFATc3 and NFATc4 in neuronal cells where they represent the pre-
dominant members of the NFAT family. Interestingly, Trim17 appeared to preferentially
bind SUMOylated forms of NFATc3, as the coimmunoprecipitation of the two proteins was
impaired either by mutations of the three SUMOylation consensus sites of NFATc3 or by
alteration of the SUMO interacting motifs (SIMs) of Trim17. In contrast, the interaction
between Trim17 and NFATc4, that is shorter and comprises only one SUMOylation site, is
SUMO-independent [23]. More importantly, immunofluorescence analyses showed that
the nuclear translocation of NFATc3 and NFATc4 triggered by a calcium ionophore, or by
neuronal depolarization, was reduced by two-fold following overexpression of Trim17.
This was associated with a similar reduction in the activity of the two transcription factors,
as estimated by NFATc3 and NFATc4-mediated luciferase expressions and by measuring
the mRNA levels of their target gene BDNF [23]. Interestingly, Trim17 could not inhibit
NFATc3 nuclear translocation when mutated on its RING domain, suggesting that its E3
ubiquitin-ligase activity may be involved in this effect, although another function of the
RING domain cannot be excluded. Moreover, the inhibitory effect of Trim17 on NFATc3
nuclear translocation was abrogated by the mutation of the SIMs of Trim17 and of the
SUMOylation sites of NFATc3. As these mutations impair the interaction between the two
proteins, these results strongly suggest that Trim17 inhibits NFATc3 by directly interacting
with it and thereby preventing its nuclear translocation [23].

Trim17 also acts on the transcriptional activity of NFATc3 by regulating its stability.
Indeed, we recently showed that Trim17 inhibits the ubiquitination and proteasomal
degradation of NFATc3 mediated by Trim39 [65]. As Trim39 inhibits NFATc3 activity by
reducing its protein level [65], Trim17 should favor the transcriptional activity of NFATc3
by relieving this inhibition. Taken together, these data indicate that Trim17 acts on NFATc3
through antagonistic mechanisms. On one hand Trim17 prevents the nuclear translocation
of NFATc3, which reduces its transcriptional activity [23], and on the other hand Trim17
should increase the protein level and activity of NFATc3 by inhibiting Trim39 [65]. As
Trim17 is itself a target gene of NFATc3 [23], the effects of Trim17 on the protein level and
activity of NFATc3 should also influence its own expression, creating both a negative and
positive feedback loop.

4.1.2. ZSCAN21
ZSCAN21 (also known as Zipro1/RU49/ZNF38) is a transcription factor regulating

the SNCA gene which encodes ↵-synuclein, an abundant presynaptic protein whose dereg-
ulation is involved in Parkinson’s disease [30,84–86]. Initially identified as a marker for the
granule neuron lineage in the CNS [87], ZSCAN21 seems to be expressed throughout the
brain, in humans and mice, at different levels, depending on the structure [86,88].

We identified ZSCAN21 as a putative binding partner of TRIM17 in a Y2H screen and
we have confirmed that the two proteins interact with each other in co-immunoprecipitation
and PLA experiments [30]. However, overexpression of TRIM17 does not induce the
ubiquitination of ZSCAN21 in cells, indicating that TRIM17 is not an E3 ubiquitin-ligase for
ZSCAN21. In contrast, we found that TRIM17 inhibits the ubiquitination and degradation
of ZSCAN21 mediated by TRIM41, thereby increasing the stability and the protein level of
ZSCAN21 [30]. As a consequence, overexpression of TRIM17 increased the expression of
↵-synuclein in neuronal cells whereas silencing of TRIM17 reduced it [30].
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Therefore, by regulating the activity or the protein level of transcription factors,
TRIM17 modulates the expression of proteins that play important roles in cell physiology.
It is particularly striking for ↵-synuclein, but it is also certainly important for the target
genes of NFATc3 that are involved in many cellular processes.

4.2. Apoptosis
Apoptosis is a form of programmed cell death that is evolutionarily conserved. It

plays a crucial role in morphogenesis and tissue homeostasis. Importantly, apoptosis is
essential for removing cells that represent a threat for the organism, such as precancer
cells, infected cells or autoreactive lymphocytes. As a consequence, dysregulations of
apoptosis lead to many human disorders. For example, a default of apoptosis is involved in
auto-immune and infectious diseases and is a sine qua non condition for tumor progression.
In contrast, an excess of apoptosis is evident in AIDS and neurodegenerative diseases [89].

The first cellular function to be attributed to Trim17 was the regulation of apoptosis
in neurons [16]. Indeed, we have shown that Trim17 expression is both necessary and
sufficient for the initiation of neuronal apoptosis through the intrinsic pathway. Initial
observations showed that transfection of primary CGNs with Trim17 leads to cytochrome
c release from mitochondria, activation of caspase 3 and cell death. This effect is abolished
in neurons deficient in Bax, thereby demonstrating that neuronal death induced by Trim17
results from the specific activation of the intrinsic pathway of apoptosis [16]. Importantly,
apoptosis induction by Trim17 depended on its RING domain, suggesting that its E3
ubiquitin ligase activity is required for this function. Moreover, inactive mutants of Trim17,
in which the RING domain was deleted or disrupted by a point mutation and that generally
exert a dominant-negative effect, protected both CGNs and SCG neurons from apoptosis.
These data, that suggest that the activity of Trim17 is necessary for the initiation of neuronal
apoptosis, were confirmed by loss-of-function experiments. Indeed, silencing of Trim17
using specific shRNA or siRNA resulted in a strong protection of CGN and SCG neurons
from survival factor withdrawal-induced apoptosis [16].

More recently, several CRISPR/Cas9 screens have confirmed the proapoptotic role
of TRIM17 and extended it to other cell types. For example, KO of TRIM17 has been
shown to confer apoptosis resistance induced by endoplasmic reticulum stress in human
fibroblasts [90] and to natural killer cells in chronic myeloid leukemia cells [91]. The
mechanisms by which TRIM17 promotes apoptosis are still poorly understood and certainly
depend on the cell types and the expression of possible substrates or binding partners.
However, a few studies have started to elucidate some of these mechanisms, notably
in neurons.

4.2.1. MCL1
The first mode of action that was identified to explain the proapoptotic effect of

TRIM17 was the ubiquitination and degradation of the antiapoptotic protein MCL1. In-
deed, MCL1 is the only substrate of the E3 ubiquitin-ligase activity of TRIM17 that has
been formally identified so far [72]. MCL1 is an important member of the Bcl-2 family. This
family comprises both antiapoptotic (BCL2, BCL-xL, MCL1, BCL2A1, etc.) and proapop-
totic (BAX, BAK, BH3-only proteins, etc.) members that play a pivotal role in the regulation
of the intrinsic pathway of apoptosis by negatively or positively controlling the release
of cytochrome c from mitochondria and thereby the activation of caspases [92]. MCL1 is
essential for the survival of multiple cell lineages and is highly amplified in human can-
cers [93]. Under physiological conditions, MCL1 expression is tightly regulated at multiple
levels, involving transcriptional, post-transcriptional, translational and post-translational
processes [23,94]. MCL1 is characterized by a short half-life. Its ubiquitination, that targets
it for proteasomal degradation, allows for rapid removal of MCL1 and initiation of cell
death, in response to various cellular events [23]. Several E3 ubiquitin-ligases have been
identified for MCL1 [94,95], including TRIM17. Indeed, we have shown TRIM17 to be an E3
ubiquitin-ligase for MCL1 in neurons [72]. Indeed, TRIM17 binds to MCL1 in coimmuno-
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precipitation experiments. Interestingly, this interaction depends on the GSK3-mediated
phosphorylation of mouse Mcl1 on Ser140 and Thr144, two residues that favor the ubiquiti-
nation and degradation of MCL1 when phosphorylated [72]. In addition, TRIM17 is able
to ubiquitinate MCL1 in vitro, in a completely acellular medium, indicating that MCL1 is a
direct substrate of Trim17. Furthermore, overexpression of TRIM17 decreases the protein
level of MCL1, this effect being reduced by the mutation of the critical phosphorylation
sites of MCL1. In contrast, silencing of TRIM17 expression both reduces the ubiquitination
level of MCL1 and increases its half-life [72]. Taken together, these data indicate that
TRIM17 is a physiological E3 ubiquitin-ligase of MCL1 in neurons. The ubiquitin-mediated
elimination of MCL1 may therefore underly, at least in part, the proapoptotic effect of
Trim17. Consistently, the mutation of the phosphorylation sites of MCL1 that are involved
in its interaction with Trim17 increased MCL1 antiapoptotic effect in neurons by improving
its stability [72].

Interestingly, an independent study aiming at elucidating the molecular basis of im-
mune resistance in cancer cells showed that NANOG-mediated/HDAC1-driven epigenetic
silencing of TRIM17 resulted in stabilization of MCL1 and subsequent resistance to apopto-
sis in immune-edited tumor cells [22]. Therefore, the role of TRIM17 in MCL1 degradation
and apoptosis regulation is not restricted to neurons and may also be important in other
physiological functions such as immune surveillance of tumorigenesis.

4.2.2. BCL2A1
TRIM17 also contributes to apoptosis regulation by modulating the stability of another

antiapoptotic protein of the BCL2 family that is the closest phylogenetic homolog of MCL1:
BCL2A1. Like MCL1, BCL2A1 has a short half-life due to its constitutive degradation
by the ubiquitin-proteasome system. We recently identified TRIM28 as an E3 ubiquitin-
ligase of BCL2A1 and have shown that GSK3 is involved in the phosphorylation-mediated
inhibition of BCL2A1 degradation [69]. Interestingly, TRIM17 binds to BCL2A1 but does
not induce its ubiquitination. On the contrary, TRIM17 stabilizes BCL2A1 by preventing
TRIM28 from binding and ubiquitinating BCL2A1. This inhibitory effect results in the
stabilization of BCL2A1 and increased resistance of melanoma cells towards apoptosis [69].
In this specific case, TRIM17 therefore exerts an antiapoptotic effect. It should be noted
that BCL2A1 and MCL1 are regulated by common factors, GSK3 and TRIM17, but with
opposite outcome. This might be related to the presence in BCL2A1 of an ↵-helix coming
from the duplication of a sequence attributed to the proapoptotic protein HCCS-1 [96]. It is
conceivable that this duplication event brought GSK3 and TRIM17-mediated stabilization
to BCL2A1 while it originally stabilized a proapoptotic protein. Whatever the reason for
this paradox, TRIM17 may have a proapoptotic effect in neurons where MCL1 expression
is crucial for survival and have an antiapoptotic effect in cell types expressing BCL2A1, the
two antiapoptotic proteins generally showing different patterns of tissue expression [69,72].

4.2.3. NFATc3 and NFATc4
In addition to its effect on BCL2 family proteins, TRIM17 can regulate apoptosis by

acting on NFAT transcription factors. Indeed, NFATs are involved in a wide range of
cellular and physiological processes including apoptosis [81,97,98]. Notably, NFATc3 and
NFATc4 have been reported to play an important role in the control of the survival/death
fate of neurons [99–102]. Indeed, data from gain of function and loss of function experi-
ments [23,99,100] or in NFATc4-deficient mice [101], suggest that NFATc4 promotes survival
in different types of neurons, in particular by inducing the transcription of survival fac-
tors [23,100]. As mentioned above, TRIM17 directly inhibits NFATc4 activity by preventing
its nuclear translocation. Therefore, this inhibition may partially mediate the proapoptotic
effect of TRIM17 in neurons [23]. The role of NFATc3 in neuronal death is less documented.
However, two studies suggest that NFATc3 has a proapoptotic effect [23,100]. It is never-
theless difficult to anticipate the exact impact TRIM17 can have on apoptosis through its
antagonistic functional interactions with NFATc3 (see above). Indeed, TRIM17 can both
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directly inhibit NFATc3 by blocking its nuclear translocation [23] and increase its protein
level by inhibiting its TRIM39-induced degradation [65]. Moreover, TRIM17 expression is
itself induced by NFATc3 [23], therefore creating complex negative and positive feedback
loops that should eventually result in fine tuning of neuronal apoptosis.

Therefore, although initially identified as a proapoptotic protein, the role of TRIM17
in cell death regulation is certainly much more complex, TRIM17 being able to both induce
and inhibit apoptosis. This fascinating duality of action is expected to depend on cell type
and physiological context that dictate the expression and the role of its possible substrates
and partners.

4.3. Autophagy
Autophagy is a homeostatic mechanism by which eukaryotic cells remove toxic aggre-

gates, invading pathogens, damaged and excess organelles, or recycle cytosolic components
to meet metabolic requirements [103]. During autophagy, cytoplasmic materials are en-
closed in double-membrane vesicles called autophagosomes and are further delivered to
lysosomes for degradation [103,104]. In the cytosol, the UPS and autophagy lysosome
(AL) pathways act simultaneously. They share components of their molecular machiner-
ies and influence each other’s activities [13,105,106]. Notably, the autophagy receptor
sequestosome-1 (SQSTM1)/p62 is the main molecule that regulates the cross-talk between
the two systems [13,107].

TRIM proteins have been shown to play a major role in the regulation of autophagy,
both in physiological and pathological conditions, by acting as autophagy regulators
and as autophagy receptors that bind targets to be degraded [108–110]. They provide a
potential link between the specificity and the regulation of autophagy [111]. Despite its
interaction with a subset of protein complexes involved in autophagy induction (mAtg8s,
p62 and ULK1-Beclin-1), TRIM17 was first identified as a negative regulator of basal and
mTOR inhibition-induced autophagy, because its knockdown dramatically increased the
number of autophagosomes in cells [109]. In fact, this effect on autophagosomes is due to
the ability of TRIM17 to recruit autophagic factors in a localized and limited area of the
cell [109]. In addition to this role in bulk autophagy, TRIM17 inhibits selective autophagic
degradation of a subset of targets, such as p62, IFT20, TRIM5↵ or TRIM22, while promoting
the degradation of at least one other target, the midbody, the transient structure that
connects two daughter cells at the end of cytokinesis [68]. Interestingly, the function of
TRIM17 in selective autophagy regulation involves its interaction with MCL1. Indeed,
MCL1 exerts an antiautophagy activity in addition to its antiapoptotic role by binding
and inactivating Beclin 1 [112], a key inducer of autophagy. TRIM17 inhibits selective
autophagy by stabilizing the MCL1/Beclin 1 complex. In contrast, when TRIM17 exerts
a proautophagy function, it releases MCL1 from the complex that it forms with Beclin 1,
thereby disinhibiting autophagy at defined sites. Therefore, the presence or absence of
MCL1 determines whether TRIM17 complexes inhibit or promote selective autophagy [68].

Moreover, TRIM17 has been shown to interact with both Galectin-3 and Galectin-8
which participate in the autophagic response to endomembrane perforation caused by
lysosomal damaging agents and by bacteria, suggesting a possible role of TRIM17 in this
process [113].

4.4. Cell Proliferation and Mitosis
Many TRIM proteins have been associated with cell cycle phase transitions and

mitotic progression [114]. Among the different phases of the cell cycle, mitosis is a delicate
event in which the segregation of chromosomes into two daughter cells takes place. It
is very important that each daughter cell receives an exact copy of the genetic material,
and defects in chromosome segregation have been associated with tumorigenesis [115].
During mitosis, centrosome duplication and subsequent centrosome separation ensure the
formation of the mitotic spindle, consisting of microtubules [116]. To ensure the precise
distribution of DNA during mitosis, the kinetochore macromolecular complex assembles
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on the centromere of each chromosome [117] and its interface with microtubules enables
chromatid segregation [118].

For most TRIM proteins, silencing generally increases the percentage of cells in G0/G1
and reduces cells in the S or G2-M phase. Two independent studies suggest that TRIM17
plays a role during mitosis progression [68,73]. Indeed, in a yeast two-hybrid screening
assay using TRIM17 as bait, Endo et al. identified ZW10 interacting protein (ZWINT), a
known component of the kinetochore complex required for the mitotic spindle checkpoint,
as a putative TRIM17 partner [73]. TRIM17 overexpression induced proteasomal degra-
dation of ZWINT and the coiled-coil domain of TRIM17 was found to be required for the
TRIM17/ZWINT interaction. These results suggest that ZWINT could be a substrate of
TRIM17 although the precise mechanism by which TRIM17 induces the degradation of
ZWINT was not examined. Moreover, overexpression of TRIM17 decreased cell prolifera-
tion in MCF7 cells in the same manner as ZWINT knockdown, suggesting that TRIM17
may interfere with mitosis by inducing the degradation of ZWINT [73]. In another study
mentioned above and addressing the role of TRIM17 in autophagy, the DNA content of
TRIM17 knockdown cells was assessed. A higher percentage of cells were in S and/or G2
phase after knockdown of TRIM17 compared to cells transfected with a control siRNA,
suggesting that TRIM17 promotes cell division [68]. Accordingly, we observed that sta-
ble TRIM17 knockdown, using shRNA-expressing lentiviruses, resulted in decreased cell
proliferation and aberrant mitosis with signs of endoreplication and cytokinesis defects
(unpublished data). Taken together, these results suggest that TRIM17 can exert opposite
effects on cell cycle regulation which might be substrate and context dependent.

Current data therefore indicate that TRIM17 is a pleiotropic protein that plays impor-
tant roles in the regulation of cellular processes as crucial as apoptosis, autophagy and
cell proliferation. The cellular functions of TRIM17 result from both indirect and direct
actions on key players in these processes. By regulating the activity of transcription factors,
either by directly binding them or by modifying their stability, TRIM17 modulates the
expression of important genes such as SNCA. TRIM17 can also directly target key proteins
involved in cell division, autophagy of cell death and modulate their protein level, either
by inducing or inhibiting their ubiquitination. Much remains to be discovered about the
modes of action of TRIM17, but there is no doubt that their elucidation will lead to a better
understanding of the mechanisms governing cell life and death.

4.5. TRIM17 Knockout Mice
Using CRISPR/Cas9 genome editing, Lu et al. have generated knockout mice for

30 testis-enriched genes, including TRIM17, to study their roles in spermatogenesis, sperm
function and in male reproduction [18]. To knockout all variants of TRIM17, they designed
sgRNAs to target the first coding exon (exon 2) and the 30 UTR region. They observed
no abnormal development or behavior in the generated homozygous mouse lines and
no significant differences in testis weight or size were observed between the KO and
wild-type mice. As TRIM17 is highly expressed in testis, histological examination of testes
and epididymides in wild-type and knockout mice was performed. No abnormalities
were observed in terms of composition, quantity, or morphology of spermatogenic cells
in the seminiferous tubules. Equally, spermatozoa in the caput and cauda epididymides
were normal and in the motility of Trim17-null spermatozoa was comparable to that of
wild-type [18].

TRIM17 (Trim17tm1e(EUCOMM)Wtsi) knockout mice were also created by The Interna-
tional Mouse Phenotyping Consortium (IMPC). However, during the engineering of the
embryonic stem cells used to generate these mice, the third loxP site located between
exon 3 and exon 4 of TRIM17 was lost due to recombination events. This prevents the
removal of exons 2 and 3 necessary for the conditional KO of TRIM17. Apparently, the
LacZ-tagged alleles could report endogenous gene expression and are highly likely to
be null mutations [119]. The phenotype observed for these mice is limited to increased
circulating magnesium, increased thyroxine and alkaline phosphatase levels together with
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an abnormal pelvic girdle bone morphology (www.mousephenotype.org, 1 March 2021). It
is currently difficult to relate this phenotype to the known cellular functions of TRIM17. In
addition, the genotype of these mice has not been specifically described and no information
on the actual expression of TRIM17 is available. Therefore, new data confirming the efficacy
of TRIM17 KO are needed to allow further study of these mice.

Although previous studies in cells suggest that TRIM17 should have a crucial role
during development by controlling cell proliferation and apoptosis, particularly in brain,
these two studies surprisingly indicate that TRIM17 deletion does not induce major defects
in mouse development. This raises the question of a possible redundancy that would com-
pensate for the absence of TRIM17 during development. However, despite the high degree
of structural similarity, the overall average sequence identity between TRIMs with PRY-
SPRY domain is not greater than 35–45% even if some residues are highly conserved [120].
The protein that substitutes for TRIM17 therefore remains to be determined. Generation
of conditional KO mice that allow deletion of Trim17 in specific organs or at different
developmental stages may help answer this question. Concerning the lack of phenotype in
adult TRIM17 KO mice, it is important to keep in mind that TRIM17 is expressed at very
low levels, in normal conditions, in most tissues. The phenotype of adult KO mice may
therefore be revealed only in stress conditions, when TRIM17 expression is highly induced,
notably to fulfill its proapoptotic function. Therefore, it would be really exciting to subject
these transgenic mice to different toxins or stresses to determine whether the absence of
TRIM17 confers a resistance in these conditions.

5. TRIM17 and Diseases
5.1. Parkinson’s Disease

Parkinson’s disease (PD) is the second most common neurodegenerative disorder
after Alzheimer’s disease and it is an important cause of chronic disability [121]. It results
primarily from the selective degeneration of dopaminergic (DA) neurons in the substantia
nigra pars compacta (SNpc). Although most cases of PD are sporadic with a variable
contribution of both environmental and genetic factors, about 10% of cases are associated
with mutations in genes with autosomal dominant or recessive inheritance. SNCA which
encodes the presynaptic protein ↵-synuclein, is arguably the most important gene linked
to PD [122,123] and accumulating data indicate that increased expression of wild-type
↵-synuclein plays a crucial role in PD neurodegeneration [124,125].

TRIM17 is potentially implicated in the pathogenesis of Parkinson’s disease in several
ways. First, by showing that ZSCAN21 is a transcription factor for SNCA and that its stabil-
ity is antagonistically regulated by TRIM41 and TRIM17 (see above), we have implicated
TRIM17 in a new pathway regulating ↵-synuclein expression [30]. Indeed, overexpression
of TRIM17 stimulates, whereas silencing of TRIM17 reduces ↵-synuclein expression in
a neuronal cell line [30]. Moreover, in the MPTP-based mouse model of PD, an increase
in TRIM17 expression is concomitant with the already reported increase in ↵-synuclein
expression. These data therefore suggest that TRIM17 induction may be involved in PD
pathogenesis related to environmental factors, such as the neurotoxin MPTP or chemi-
cally related pesticide or herbicide molecules, by increasing ↵-synuclein expression [30].
Consistent with a possible role of TRIM17 in ↵-synuclein expression and its deregulation,
analysis of the GTEX cohort with Xena browser revealed a large correlation between high
expression of TRIM17 and high expression of SNCA genes [126].

Second, a few genetic variations in the TRIM17 gene were found in PD patients.
Indeed, we identified two rare variants of TRIM17 in a cohort of 200 patients with autosomal
dominant PD: TRIM17p.R78W and TRIM17p.T407N [30]. Interestingly, the amino acid
substitution T407N is located in the PRY-SPRY domain of TRIM17 which is thought to be
involved in the interaction between TRIM proteins and their partners [39], as it is the case
for TRIM41 and ZSCAN21 [30]. This genetic variation may therefore impair the interaction
of TRIM17 with its partners and affect the TRIM17/TRIM41/ZSCAN21 pathway. The
R78W substitution is located in a region linking the RING and the B-Box domain, called
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RBL linker [120]. This region is highly conserved throughout species in TRIM17 and is also
present in other TRIM proteins, suggesting an important functional role. Interestingly, the
RBL motif has been shown to be critical for the folding of the entire RING-B-box region
of TRIM21 [120]. Consistently, in a whole-exome sequencing study aiming at identifying
genetic variants contributing to disease risk in familial PD, two nonsynonymous variants of
TRIM17 (TRIM17p.Q71E and TRIM17p.L194P) were identified in a cohort of 93 individuals
from 32 families with PD [127]. It is important to note that the Q71E substitution is located
in the RBL linker and L194P in the coiled-coil domain of TRIM17. As discussed above, these
two regions are important for TRIM functions. Frequency analyses of these four TRIM17
variants showed that they are all very rare in the general population and three of them
are predicted to be damaging or possibly damaging for the protein function by SIFT or
Mutation taster algorithms [127]. However, despite the bioinformatic filters applied in the
study from Farlow et al. to predict damaging alleles, family members carrying the TRIM17
variants also exhibited variants in eight other genes. Further studies are thus needed
to elucidate the functional consequences of these TRIM17 variations and to determine
whether they have any causal link with PD.

Finally, as mentioned previously, TRIM17 directly inhibits and prevents the degra-
dation of another transcription factor, NFATc3 [23,65]. Two independent studies have
implicated NFATc3 in ↵-synuclein-induced degeneration of midbrain dopaminergic neu-
rons in PD [128,129]. However, further investigations are needed to determine whether
TRIM17 may participate in the toxicity of ↵-synuclein by acting on NFATc3.

5.2. Autism
Genetics is a major contributor to autism spectrum disorders (ASD), de novo muta-

tions representing an important source of causality [130]. Three high throughput DNA
sequencing studies implicate TRIM17 de novo mutations in ASD [131–133]. Notably, an
insertion in the TRIM17 gene located just before the sequence coding for the PRY-SPRY
domain was linked to autism in two studies [132,133]. This insertion leads to the expression
of a truncated form of TRIM17 deleted of its PRY-SPRY domain. In a recent large-scale
sequencing study from a cohort of 35584 samples, including 11986 samples with ASD, 102
genes implicated in risk for ASD were identified [131]. In this study, a missense varia-
tion located in the coiled-coil domain of TRIM17 (TRIM17p.R159T) was associated with
ASD [131]. These two genetic variations in TRIM17 affect two domains that are important
for TRIM activity: the coiled-coil domain allowing TRIM dimerization and the PRY-SPRY
domain usually involved in the interaction with substrates or partners. This suggests that
TRIM17 activity could be altered by these variations. Further investigations are needed
to determine if TRIM17 is actually linked to ASD and by which mechanism. However, it
is interesting to note that genetic variations in two partners of TRIM17, ZSCAN21 [134]
and TRIM41 [131], were also linked to ASD in independent studies. Notably, the variation
that was identified in TRIM41 affects its PRY-SPRY domain [131]. In addition, SNCA gene
deletions and partial duplication have been found in ASD patients [135,136]. As accumu-
lating arguments suggest that ↵-synuclein may be involved in ASD pathogenesis [136], it
is tempting to speculate that TRIM17 may also play a role in ASD by altering ↵-synuclein
expression through its action on TRIM41 and ZSCAN21.

5.3. Cancer and Chemoresistance
Tumorigenesis is a multistep process. Each step reflects genetic alterations that con-

fer one or another type of growth advantage, leading to the progressive transformation
of normal cells into highly malignant derivatives. Among the essential cellular process
whose alteration participates in tumorigenesis [137], TRIM17 is involved in apoptosis and
cell proliferation. In particular, TRIM17 regulates the protein levels of two antiapoptotic
proteins of the Bcl-2 family, MCL1 and BCL2A1, that both act as oncogenes. Indeed, MCL1
is one of the most highly amplified genes across a variety of solid and hematological
human malignancies [93]. In many cancers, MCL1 is essential for cancer cells to over-
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come oncogenic stress-induced apoptosis [138] and for chemotherapeutic resistance and
relapse [139,140]. Similarly, BCL2A1 is highly upregulated in several hematopoietic malig-
nancies and melanoma, in which it contributes to chemoresistance [141,142]. Downregula-
tion of BCL2A1 in these malignancies restores sensitivity to chemotherapeutics [143,144].
TRIM17 is also involved in mitosis by inducing the degradation of key components of the
mitotic spindle machinery, midbodies and the kinetochore protein ZWINT, via autophagy
and UPS, respectively [68,73]. Notably, ZWINT is upregulated in many human cancers
and is associated with poor clinical prognosis and early recurrence [145,146]. Conversely,
ZWINT knockdown effectively inhibits proliferation of glioblastoma cells in vitro and
suppresses glioblastoma growth in vivo [146]. Therefore, it would not be surprising that
dysregulation of TRIM17 participates in tumorigenesis and chemoresistance by altering
apoptosis and mitosis regulation. Some data support this hypothesis.

TRIM17 expression has been shown to be modified in tumors [147,148]. For exam-
ple, TRIM17 expression was found to be significantly increased in osteosarcoma tissues
compared with adjacent nontumorous tissues [147] and TRIM17 is the most frequently
amplified of the TRIM genes in breast invasive carcinomas [149]. Analysis of TCGA (The
Cancer Genome Atlas program) data based on the correlation between mRNA expres-
sion levels (FPKM values) of TRIM17 and patient survival in breast cancers showed that
higher expression of TRIM17 is associated with a better survival probability and that
TRIM17 expression could be used as a favorable prognostic indicator in breast cancers [150]
(www.proteinatlas.org). However, additional investigations are needed to understand
whether these increases are a cause or a consequence of the transformed phenotype.

Several genome-wide KO screens by CRISPR/Cas9 have identified TRIM17 as one of
the genes whose inactivation results in drugs resistance in tumor cell lines. For example, KO
of TRIM17 confers resistance to the BCL2 inhibitor Venetoclax in acute myeloid leukemia
cells [151], to the bacterial toxin T3SS2 in a Colonic Adenocarcinoma Cell line [152] and
to the ferroptosis-inducing drug ML210 in clear-cell carcinoma cell lines [153]. However,
the mechanisms by which TRIM17 confers drug sensitivity in these tumor cells has not
been addressed. In the case of immune resistance conferred by the NANOG-HDAC1 axis
(see above), the effect of the epigenetic silencing of TRIM17 was clearly attributed to MCL1
stabilization [22]. Although most studies point to a drug sensitization effect, TRIM17
may also play a role in chemoresistance in some tumors. Indeed, we found that TRIM17
expression is induced in melanoma cells following treatment with the BRAF inhibitor
PLX4720. More interestingly, KO of TRIM17 restored sensitivity to PLX4720 in resistant
melanoma cells, by relieving the inhibition of TRIM28-mediated ubiquitination of BCL2A1
and thereby by reducing BCL2A1 level [69]. Therefore, TRIM17 may be involved in the
chemoresistance of cancer cells that exhibit a survival dependency on BCL2A1 whereas it
would increase the sensitivity of tumors depending on MCL1, due to its opposite effects on
these two antiapoptotic proteins (see above).

Additional investigations are required to determine the relative importance of TRIM17
in tumorigenesis and drug resistance. However, existing data clearly indicate that the role
TRIM17 can have in cancer depends on tumor types, the mechanisms underlying transfor-
mation and resistance, and the nature of the proteins that it can target in these pathways.

5.4. Other Pathologies
Several variants of the TRIM17 gene have been identified that are potentially as-

sociated with different additional pathologies. For example, a candidate-gene testing
for orphan limb-girdle muscular dystrophies (LGMD) identified a single mutation in
exon 4 of the TRIM17 gene in patients [154]. However, the association of this mutation
with LGMD phenotype remains to be investigated. In a recent study, next-generation
sequencing of 130 children with hypospadias of unknown etiology identified the vari-
ant TRIM17p.R37X in one hypospadias patient. However, this patient also carried the
ARp.Q58L variant, making it difficult to establish a link between the TRIM17 variant
and the phenotype [155]. In addition, high throughput screenings have linked mutations
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in the TRIM17 gene with various disorders. For example, the variants TRIM17p.V132L
and TRIM17p.G326V have been found to be associated with multiple myeloma [156] and
recessive cognitive disorders [157], respectively.

Although many studies are necessary to establish the pathological role of TRIM17 in
neurological diseases, cancer or other disorders, its implication in cellular processes that
are dysregulated in many pathologies, such as cell death and proliferation, makes it an
obvious candidate. Importantly, TRIM17 is a particularly interesting therapeutic target.
Indeed, as it is specifically induced in pathological conditions, its inhibition should have
less detrimental side effects. Moreover, since its cellular functions are generally related
to its interaction with defined partners, interfering with these specific interactions should
inhibit its pathological effects without altering its other functions.

6. Conclusions
TRIM17 is a pleiotropic protein at the crossroad of many crucial cellular functions

such as apoptosis, autophagy and cell cycle. Fascinatingly, it can play an opposite role in
these functions, depending on the partners it interacts with. Its expression is generally
very low, and it is essentially only detectable in brain and testes in adulthood. However, it
can be highly induced by cellular stress, anticancer drugs or exposure to environmental
toxins in many tissues, making it a decisive trigger signal in various pathophysiological
conditions. Although TRIM17 possesses E3 ubiquitin ligase activity to drive the degrada-
tion of substrates such as MCL1 and ZWINT, it also functions as a stabilizer of NFATc3,
BCL2A1 and ZSCAN21 by inhibiting TRIM28, TRIM39 and TRIM41, respectively. This
duality of molecular function may be explained by the ability of TRIM proteins to associate
with several E2 enzymes and different TRIM partners, including their own isoforms. The
protein complexes assembled by TRIM17 could either promote or inhibit the binding of
substrates or E2 enzymes, eventually leading to the stabilization or degradation of the
target. A major challenge for a better understanding of the cellular and pathophysiological
roles of TRIM17 will be to elucidate the other proteins whose stability it regulates, as well as
the composition of TRIM17 complexes and the cellular context in which they form. This is
of particular importance, as the specific interaction with its substrates or its TRIM partners
may be targeted in pathological conditions in which TRIM17 is induced, for the treatment
of human diseases as diverse as PD and cancers.
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