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Coordinated active repression operates via
transcription factor cooperativity and
multiple inactive promoter states in a
developing organism

Virginia L. Pimmett 1, Maria Douaihy 1,2,4, Louise Maillard 1,4,
Antonio Trullo 1, Pablo Garcia Idieder 1, Mélissa Costes 1,
Jeremy Dufourt 1,3, Hélène Lenden-Hasse 1, Ovidiu Radulescu 2 &
Mounia Lagha 1

Refining transcriptional levels via active repression in a euchromatic context
represents a critical regulatory process. While the molecular players of active
repression are well described, their dynamics remain obscure. Here, we used
snail expression dynamics as a paradigm to uncover how repression,mediated
by the Snail (Sna) repressor, can be imposed within a developing tissue.
Combining live imaging and mathematical modeling, we show that Sna-
mediated repression is cooperative and that cooperativity is primarily medi-
ated by the distal enhancer. Repression shifts transcription bursting dynamics
from a two-state ON/OFF regime to a three-state repressed regime with two
temporally distinct OFF states. Mutating Sna binding sites suggests that
repression introduces the long-lasting inactive state, which is stabilized by
cooperativity. Our approach offers quantitative insights into the dynamics of
repression and how transcription factor cooperativity coordinates cell fate
decisions within a tissue.

Cell fate specification critically depends on differential gene expres-
sion. Cells are specified through the concomitant transcriptional acti-
vation of key lineage specifying factors and the repression of
alternative fates. The coordination of gene activation is particularly
important during the development of multicellular organisms where
multipotent cells must choose distinct differentiation routes in an
orchestratedmanner. Thanks to functional genomics approaches, how
the combinatorial action of transcription factor (TF) elicits the acti-
vation or repression of developmental promoters is relatively well
understood. Downregulation of a gene is typically achieved by
repressors, TFs that recruit co-repressors to reduce or silence gene

expression. Depending on their range of action, they can be categor-
ized into long or short-range repressors. Some (co-)repressors, such as
Groucho/TLE, act over large distances and mediate long-range
repression by silencing the entire locus. In contrast, short-range
repressors function locally (50–150 bp) to inhibit the basal transcrip-
tional machinery without interfering with more distant activators1. At
the molecular level, several mechanisms have been proposed includ-
ing direct competition between activators and repressors for a shared
DNA binding site or ‘quenching’ of closely located activators and
members of the basal transcription machinery2. A third and non-
exclusive mechanism is the recruitment of histone deacetylases
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(HDACs), condensing chromatin and restricting access to the
promoter1.

Twomodes of transcriptional repression canbedistinguished: the
classical silencing in the context of heterochromatin or reduction in
the context of a euchromatic environment, referred to as active
repression. Contrary to Polycomb-mediated gene silencing, much less
is known concerning active repression3. Yet, because of its fast estab-
lishment, reversibility, and capacity for partial reductionof expression,
active repression stands as an optimal mode of gene expression con-
trol during periods of rapid decision-making. Failure of repression can
lead to developmental defects and diseases such as cancer, as exem-
plified by the regulation of the Epithelial to Mesenchymal Transition
(EMT). This fundamental cellular process is instructed by the con-
served pro-EMT snail family, composed of Snail/Slug, Twist and ZEB1,
acting as both activators and repressors4. Snail (Sna) is a zinc finger
transcription factor primarily acting as a repressor, but reported to
also act as an activator in some contexts5. Sna plays a critical role for
correct completion of EMT, such as during Drosophila gastrulation or
vertebrate neural tube formation6. Sna overexpression is sufficient to
induce EMT7 and tumorigenesis8. Thus, tuning Sna levels and the
network induced by this repressor TF is critical.

While repressor identities are well known, their impact on tran-
scriptional kinetics is much less described. Transcription is inherently
dynamic and occurs in pulses known as transcription bursts9. Tran-
scription bursts are due to the stochastic switching of the promoter
between permissive active states (ON, from which RNA polymerase
II (Pol II) can initiate) and inactive states (OFF) of multiple timescales9.
The mean RNA production depends on the switching rates between
these states andon the active state production rate10. Repressors can in
principle modulate any or all state switching rates, resulting in fine-
tuning of repression rather than an all-or-nothing process. However,
the schemeof state switching and the specific parameter(s)modulated
by repression remain unknown.

In this study, we use snail expression dynamics as a paradigm to
uncover how active repression, mediated by the Sna short-range
repressor, can be imposed within a developing tissue. We take
advantage of the power of quantitative live imaging to monitor
endogenous sna transcription and protein dynamics in single nuclei
prior to a major developmental decision, the EMT. Using novel theo-
retical approaches, we uncovered and quantified the timescales of the
kinetic bottlenecks tuning transcription during repression. Based on
experimental measurements, we propose a stochastic model of tran-
scriptional activation and repression. In this model, repression adds a
new long OFF state to the two-state unrepressed dynamic and mod-
ulates the stochastic switching rates cooperatively. Numerical simu-
lations of this model suggest that the cooperativity between
repressors contributes to coordination of repression within a tissue.

Results
Monitoring transcriptional repression in vivo
Todecode the dynamics of transcriptional repression, we focused on a
model gene, snail (sna), which undergoes partial repression in the early
blastoderm embryo. This gene encodes a key TF instructing the
mesodermal fate and subsequent EMT prior to gastrulation. To
examine the endogenous dynamics of snail expression in real time, we
inserted a 24xMS2 array11 into the 3ʹUTR of the endogenous snail gene
using CRISPR-mediated recombination (snaMS2; Fig. 1a). When both
maternal and paternal alleles are tagged, the resulting snaMS2

flies are
homozygous viable, and MS2 reporter expression matched the endo-
genous sna signals, as shown by single mRNA fluorescence in situ
hybridization (smFISH) experiments (Supplementary Fig. 1A, B).

To image transcription, MS2 coat protein is fused to eGFP (MCP-
eGFP) and provided maternally along with a fluorescently-tagged his-
tone (His2A-mRFP). In combinationwith the paternally provided snaMS2

allele, transcription is visible as bright nuclear foci (Supplementary

Movie 1). Signal intensity was retrieved in 3D and tracked through nc13
and nc14, using mitosis as a temporal ‘time-zero’ reference for each
nuclear cycle.

We characterized the dynamics of endogenous sna transcription
at the single nucleus level in embryos heterozygous for snaMS2. Tran-
scription is detectable in living embryos as early as nc11 (Fig. 1b). While
transcription was stable throughout nc11-13, the dynamics in nc14
evolved significantly over time. Reactivation after mitosis in nc14 is
rapid and synchronous but declines after a short plateau (Fig. 1c, d,
Supplementary Fig. 1C). This change of regime and transcriptional
attenuation is reflected in the individual nuclear traces as well, where
TS intensity declined after peaking without completely vanishing
(Fig. 1e, Supplementary Fig. 1D).

We turned to identifying a putative repressor of sna in nc14. As
Sna is a transcription factor known to act as a repressor in Drosophila
and to form an autoregulatory loop in other species12,13, we examined
whether Sna formed an auto-repressive loop in the early embryo. To
test Snail function while maintaining snail transcription as a readout,
we created a protein-null allele (snaΔATG) (Fig. 1f, Supplementary
Fig. 2A–D). Using smFISH, we observed that the loss of Sna resulted in
a derepression of sna transcription in late nc14 (Fig. 1g). Thus, it
appears that while sna transcriptional activity is stable during early
embryogenesis, it undergoes rapid evolution in nc14 driven at least in
part by Sna itself.

snail repression results in a non-stationary transcriptional regime
To access the kinetic parameters driving sna expression, we employed
our previously developed deconvolution pipeline14–16 to extract the
sequence of Pol II initiation events from the MS2-MCP-GFP signal for
each single nucleus. Critically, this process does not rely on the arbi-
trary assignment of bursts to the signal and is valid for signals that are
both stationary (i.e. the underlying kinetic parameters are stable across
time) and non-stationary (i.e. temporally variable kinetic parameters).

In brief, we consider the intensity trace of each spot to be a con-
volution ofmultiple concurrently transcribing polymerases andmodel
the contribution of a single polymerase, assuming full processivity,
constant speed, and a negligible retention time at the transcription site
(see “Methods”). To estimate the dwell time comprising Pol II elon-
gation and transcript retention at the TS, we used signal
autocorrelation17 (Supplementary Fig. 3A, B); the resulting values are
similar to those obtained from published Pol II speedmeasurements18.
Using deconvolution, fluorescence traces can thus be converted to
polymerase initiation events for single nuclei. Single nuclei can then be
assessed as an ensemble of polymerase initiation events over time
(Fig. 2a, b).

We extracted the waiting times between polymerase initiation
events for each nucleus and quantified themeanwaiting time between
polymerase initiation events (<τ > ) in a sliding window (Fig. 2c). <τ>
represents the inverse mean RNA production, and is thus directly
related to the product of pON, or the probability to be in a productive
state, and kini, or the initiation rate while in the productive state19. The
temporal profile of pON · kini = 1/<τ> is a readout of the stability of
transcription. Using a sliding window, the temporal evolution of
pON · kini (or RNA production rate) can be tracked across time. We
examined the temporal evolution of theRNAproduction rate for sna in
nc14 (Fig. 2d) and compared it to another target of Snail-mediated
repression, short gastrulation (sog, Fig. 2e, Supplementary Movie 2)20.
Unlike sna, which undergoes a partial repression, sog is fully silenced
by the action of Sna21 in themesoderm (Fig. 2f, g). For both sna and sog,
the mean waiting time between polymerase initiation events was non-
stationary across nc14 (Fig. 2d, e).

As the population-level signal is non-stationary, we employed the
Bayesian change point detection (BCPD) algorithm22 to identify the
timing of change between a transcriptionally unrepressed and
repressed program at the single nucleus level (see “Methods”).
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Fig. 1 | Monitoring transcriptional repression in vivo: the case of sna auto-
regulation. a Schematic view of snaMS2 allele (above) and expression domain in the
embryonic mesoderm (below, teal). The box indicates the restricted imaging area.
b Maximum intensity Z-projection of representative nuclei showing MS2/MCP-
eGFP-bound puncta and nuclei (His2A-mRFP) in sequential nuclear cycles. Images
were taken from a heterozygous embryo expressing snaMS2 (Supplementary
Movie 1). Scale bar represents 10 µm. c Instantaneous activation percentage
(mean ± SEM) curves of ventral nuclei during the first 30min of nc14. Time zero is
from anaphase during nc13-nc14 mitosis. d Fluorescence intensity of actively
transcribing nuclei (mean± SEM) for snaMS2/+ nuclei during the first 30min of nc14.

Time zero is from anaphase during nc13-nc14 mitosis. e Sample single nucleus
fluorescence traces in the first 30min of nc14. Time zero is from anaphase during
nc13-nc14 mitosis. f snaΔATG/ΔATG embryos demonstrate absence of Snail protein
(green) and increased nascent transcription activity by smFISH relative to control
embryos. Scale bar represents 10μm. g Quantification of endogenous sna and
snaΔATG transcription site intensity divided by background in early and late nuclear
cycle 14 embryos via smFISH. Statistics: snaMS2/+: N = 6 embryos, n = 484 nuclei.
smFISH: N = 3 snaΔATG/ΔATG embryos for early and late smFISH time points as deter-
mined by membrane invagination. Significance is indicated using a Kruskal-Wallis
test (two-sided) with Dunn’s multiple comparisons.
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Importantly, this algorithm identified the point at which the repressive
regime is stabilized (SupplementaryFig. 4A–D). Interestingly, the inter-
nuclear coordination of repression, represented by the breadth of
repression onset times, was weaker for incomplete repression (sna,
Fig. 2h) compared to complete repression (sog, Fig. 2i). We also
examined whether repression was implemented similarly between

both alleles of sna by analyzing snaMS2/snaMS2 homozygous embryos.
The median time where repression achieved stationarity (i.e. the
underlying kinetic parameters stabilized) for the first- and second-
activated allele was similar to both each other and a randomly selected
pool of alleles (Supplementary Fig. 5A–F), indicating repression is
implemented uniformly across alleles. We conclude that, although
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repression is applied progressively, stationary repression is reached
after a certain onset time, and variations in this time can be used to
quantify the coordination of repression.

Snail-mediated active repression involves Sna
cooperative action
To examine the interplay between endogenous Sna protein and its
target genes sna and sog, we employed the LlamaTag system23 and
created a CRISPR snailLlama (Fig. 3a, b). The LlamaTag system relies on a
nanobody, targeting a fluorescent protein, fused to a protein of
interest and the presence of a free fluorescent detector. Once Sna
protein is translated in the cytoplasm, the Llama nanobody binds to
free maternally-deposited GFP and is then imported in the nucleus.
The subsequent increase in nuclear fluorescence signal provides a
readout of Sna nuclear levels.

The snaLlama CRISPR allele allowed us to quantify with high spatio-
temporal resolution the levels of endogenous Sna protein (Fig. 3c, e, f)
by tracking the nuclear GFP signal. Despite the early accumulation of
sna transcripts (Fig. 1b), nuclear accumulation of Sna protein was
detected weakly in nc13 (Fig. 3c, Supplementary Movie 3). By com-
paring signal within the mesoderm to that in a neighboring tissue
where sna is not expressed (neurogenic ectoderm, Fig. 3d), we
observed Sna nuclear protein levels in nc14 continuously increase in
the presumptive mesoderm (Fig. 3e).

Sna has previously been demonstrated to bind known enhancers
of both sna and sog24 (Fig. 3f, g). Consistent with the idea that Sna acts
as a transcriptional repressor, we observed an anticorrelation between
Sna protein levels and RNA production rates of both sna and sog
(Fig. 3h, j). We next wanted to quantitatively characterize their rela-
tionship. The input/output relationship is steep for both sna and sog,
indicating thresholding effects. Such relationships are typically fitted
with a Hill equation25 that accesses a key parameter, the Hill coefficient
n (representing the degree of cooperativity). The Hill coefficient for
sna during nc14 was 6.07 (Fig. 3i). Similarly, the relationship between
input Sna protein and output sog transcription also indicates high-
degree cooperativity (Hill coefficient 7.6, Fig. 3k).

Collectively, the relatively high Hill coefficients indicate that Sna
protein may act cooperatively to elicit repression via its own cis-reg-
ulatory regions and through sog enhancers. We note however, that the
Hill equationmodel is purely phenomenological and does not account
for the details of the underlying mechanism.

Sna cooperativity is differentiallymediated through distinct cis-
regulatory regions
We exploited previously characterized sna BAC reporter lines26 to
explore where Sna cooperative action operates. Sna is regulated by a
pair of non-redundant enhancers, one proximal and one distal27–29

(Fig. 4a). We performed quantitative imaging of the sna wild-type and
enhancer deletion BACs in the mesoderm (Fig. 4b) and characterized
the relationship between RNA production rate and the Snail endo-
genous protein using a Hill function. Compared to the control, loss of
thedistal (i.e. shadow28, Fig. 4c, f) enhancer (snaΔDIST, Fig. 4d) resulted in
a complete loss of Sna cooperativity (Hill coefficient ≈1, Fig. 4g) while

the loss of the proximal enhancer (snaΔPROX, Fig. 4e) demonstrated
increased Sna cooperativity (Hill coefficient ≈4) (Fig. 4h). Thus, it
appears that Sna cooperative action is primarily decoded by the distal
enhancer.

Sna repressor acts by introducing a secondnon-productive state
and modulating the promoter’s state switching rates
It remains an open question which aspect of the transcriptional kinetic
cycle repression acts on. As the Hill equation is phenomenological in
nature, we turned to transgenic reporter assays to establish a causal
link between Snail binding and transcriptional repression, and to
investigate the link between promoter dynamics and the imposition of
repression.

The sna distal enhancer has a cluster of nine Sna binding sites
(Fig. 5a, pinkbars).Weemployedourpreviously established transgenic
reporter platform16 to investigate the effect of these Sna TF binding
sites on transcription dynamics. We generated a series of transgenes
where transcription is controlled by 4 types of enhancers (Fig. 5b–e):
the wild type sna distal enhancer (Fig. 5b, snailDistal), a mutated distal
enhancer with every other Sna binding site removed (i.e. 5/9) (Fig. 5c,
snailDistalAlt), with 8/9 Sna binding sites removed (Fig. 5d, snailDistalMut), or
a fragment of thedistal enhancerwith noSna sites (Fig. 5e, snailDistalCore).
Following deconvolution, we observed the snailDistal transgene had
globally lower numbers of polymerase initiation events compared to
snailDistalAlt, snailDistalMut and snailDistalCore (Fig. 5f–i). Thus, the sna distal
enhancer is derepressed in the absence of Sna binding sites.

To further investigate the underlying kinetics of transcription
driven by each enhancer, we examined the distribution of waiting
times between polymerase initiation events. Briefly, this distribution
can be fitted with a multi-exponential function that provides insight
into the number of promoter states aswell as their duration (TState) and
probabilities (pState), and the polymerase initiation rate (kini)14 (Sup-
plementary Data 1).

Thedistribution of Pol IIwaiting times from the snailDistal construct
could not be fitted with a bi-exponential function, meaning a two-state
‘random telegraph’ model was insufficient to describe the promoter
states (Supplementary Fig. 6A, B). A three-exponential fitting was suf-
ficient, corresponding to a three-state model (Fig. 5j) with one pro-
ductive (ON) state and two non-productive states on the order of
minutes (OFF1) or seconds (OFF2) of approximately equal probability
(Fig. 5k). The snailDistalAlt transgene also required a three-state model
fitting, but interestingly showed a substantial decrease in the length
and probability of the OFF1 state, with a higher probability of the ON
state to compensate (Fig. 5l, Supplementary Fig. 6C, D). Transcription
from the snailDistaMut enhancer, with 8/9 Sna binding sites mutated, was
adequately fit by a two-state model (Fig. 5m, Supplementary Fig. 6E).
Importantly, snailDistaMut transcription dynamics exhibit a loss of the
long OFF1 state, at the expense of an increase in both the duration and
probability of the productive ON state as well as a small increase in the
duration of the single non-productive OFF state. This bursting regime
was recapitulated in the snailDistaCore reporter, which was also well
described by a two-state model with a longer and highly probable ON
state and a single short non-productive state (Fig. 5n, Supplementary

Fig. 2 | Deconvolution of transcription in living embryos reveals gene-specific
behavior at repression onset. Heatmap showing the number of polymerase
initiation events in nc14 for snaMS2/+ (a) and sogMS2/+ (b) as a function of time. Each
row represents one nucleus, and the number of Pol II initiation events per 30 s bin is
indicated by the bin color. c Deconvolution of the transcriptional site intensities
into RNA polymerase II initiation events over time. The average waiting time (<τ > )
between polymerase initiation events is calculated for all nuclei within a sliding
time window (Δt). The inverse of <τ> is the product of the probability to be active,
denoted pON, and the polymerase initiation rate (kini) for the given time window.
The inverse value is plotted over time as a proxy for the stability of the underlying
transcriptional kinetic regime. Stationarity is denoted by a slope ≈ 0. Kinetic

parameter stability as a function of time for snaMS2/+ (d) and sogMS2/+ (e) transcription
expressed as the product of the probability to be active (pON) and the RNA poly-
merase II initiation rate (kini). Error represents the upper and lower bounds of the
95% confidence interval from all movies. False-colored projections from live ima-
ging of snaMS2/+ (f) and sogMS2/+ (g) embryos, with active nuclei indicated in teal and
inactive in gray (Supplementary Movies 1, 2). scale bar is 20μm. Distribution of
switching times for initiation of stable repression in nuclear cycle 14 for snaMS2 (h)
and sogMS2 (i) as determinedusing BayesianChange Point Detection. The p value for
the difference in distributions is 0.0012 (Kolmogorov-Smirnov test). Statistics:
snaMS2/+: N = 6 embryos, n = 448 nuclei. sogMS2/+: N = 3 embryos, n = 141 nuclei.
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Fig. 6F). Interestingly, the initiation rate was consistent between all
three reporter constructs, indicating that Sna binding does not affect
Pol II firing from the ON state. Thus, the Sna repressor likely acts by
introducing a new kinetic bottleneck, leading to a second non-
productive state at the expenseof the productiveON state and thepre-

existing non-productive OFF state, and without affecting the poly-
merase initiation rate.

Multiple kinetic state topologies have been proposed for higher-
order kinetic models30 with multiple productive and non-productive
states. Based on our previous work, and in agreement with the
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deconvolution findings,we favor a non-sequential three statemodel of
promoter dynamics (Fig. 5j) where there is no direct transition
between long OFF1 and short OFF2 state. In this model, the transitions
from ON to OFF1 and from ON to OFF2 are independent. A sequential
model15,16,30 would require the promoter to systematically switch to
OFF2 before transitioning to OFF1. We have shown that both the
sequential and non-sequential models are compatible with the MS2
data15,19. Furthermore, they are also mechanistically indistinguishable
when the twoOFF states havedistinct lifetimes (onemuch shorter than
the other). In this case, the estimated lifetimes of OFF1 and OFF2 are
very similar across the two models and under a wide range of condi-
tions and genotypes (see Supplementary Text 1).

We also conclude that one of the two OFF states of the three-state
model is suppressed when transcription is driven by the snailDistaMut and
snailDistaCore enhancers. In the snailDistalAlt construction the long OFF1 state
occurs rarely (pOFF1 =0.09 compared to pOFF1 =0.3 in snailDistal), sug-
gesting that repression introduces the long OFF1 state. This conclusion
is further supported by the distinct orders ofmagnitude of theOFF state
durations: TOFF1 is on the order of minutes, and TOFF2 on the order of
seconds in the three-state constructions, whereas the single TOFF in the
two-state constructions is clearly closer to the TOFF2 values.

In summary, we find that the Sna repressor acts by introducing a
second long non-productive state and modulating all state switching
rates, but it does not affect the polymerase initiation rate in the
permissive state.

The endogenous repressed state recapitulates transgenic
reporter activity
Transgenic reporter experiments suggest that transcription bursting
dynamics follow a three-state regime under repression, featuring an

additional long OFF state that is not present in the absence of
repression. Based on our findings with transgenic reporters, we
hypothesized that autorepression of the sna locuswould also require a
three-state topology (Fig. 5j). We used the BCPD procedure previously
outlined to isolate the stably repressed phase of endogenous snaMS2

transcription (Supplementary Fig. 7A, B) and fit it using various multi-
exponential models. We found that a three-state model was required
to capture the kinetics of endogenous snaMS2 during stable repression
(Fig. 6a, b, Supplementary Fig. 7C, D). This contrasted the unrepressed
nc13, where a bi-exponential fitting could recapitulate the data (Sup-
plementary Fig. 8A–F).

Previous research has established a role for promoter-
proximal polymerase pausing in the introduction of a novel pro-
moter state16. We thus tested whether pausing was responsible for
the introduction of a new rate-limiting step in transcription, by
perturbing the levels of key pausing factors, Paf131, a subunit of the
NELF complex32 or Cyclin T33, required for pause release. We
employed two independent RNAi-mediated knockdowns of paf1,
RNAi-mediated knockdown of Nelf-A, as well as overexpression of
Cyclin T 33 in the early embryo. None of these perturbations altered
the number of rate-limiting steps during stable sna repression
(Supplementary Fig. 9A–O).

Collectively these results suggest that under repression, the
endogenous promoter switches between three temporally distinct
states: a competent ON state from which Pol II initiates at a given rate,
and two inactive states, one short at seconds-scale and a longer
minutes-scale state. Because the three-state promoter topology per-
sists in conditionswherepause release is favored,we conclude that the
extra rate-limiting step present during repression cannot be attributed
to a paused state.
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A minimal stochastic model links cooperativity and coordina-
tion of repression
To gain quantitative insights into the relationship between Snail-
mediated repression and transcriptional bursting, we developed a
minimal stochastic model of transcriptional bursting. The model was
designed to describe the active (nc13), the repression buildup (early
nc14), and the stable repressed regimes (mid-nc14) of sna transcrip-
tion. We therefore used a three-state promoter model comprising two
transcriptionally inactive states, a long one (OFF1) and a short one
(OFF2), and a permissive (ON) state (Fig. 6a, Supplementary Fig. 10A,
B). We examined both the sequential and non-sequential three-state
transcriptionalmodels, and did not note a substantial difference in our
findings (Supplementary Fig. 11, Supplementary Text 1).

To develop a minimal stochastic model, we first ensured that the
state OFF1 is not accessible from the permissive ON during the active
phase, corresponding to low concentrations of the putative repressor
Sna. To achieve this, we considered that the parameter k1

m (transition
from ON to OFF1) decreases to zero when the concentration of Sna
protein ([Sna]) approaches zero. Thus, when [Sna] is low, OFF1 can no
longer be reached from ON, rendering the three-state model equiva-
lent to a two-state model.

The parameters k2m and k2p (transition rate from ON to OFF2 and
from OFF2 to ON) have smaller values in nc13 relative to nc14 (Sup-
plementary Data 1) and were considered to increase with [Sna]. The
parameter k1p (OFF1 to ON transition) is not available for nc13 because
OFF1 is absent in the two-state model. However, it is available for nc14
and for the transcription regimes of sna enhancer reporter transgenes
(Fig. 5). When these reporters are arranged in order of decreasing
repression (Supplementary Fig. 10C–G), the value of k1p increases,
which leads us to propose a decrease in k1p with increasing [Sna]. The
limiting ([Sna]→0) value of k1p for small concentration of [Sna] is a free
parameter that is fitted from data. All the dependencies of state
switching rates on [Sna] weremodeled as Hill functions to account for
cooperativity. Although theremay be relationships between the values
of these rates and the Hill coefficient (for instance, a large Hill coeffi-
cient may correlate with longer-lived states), to minimize the number
of parameters and avoid overfitting, we considered a single coefficient
for all the states and transitions. Finally, we considered that the poly-
merase initiation rate (kini) does not depend on [Sna].

After implementing the active nc13 and repressed nc14 phase
parameters (see “Methods”), our model remained with only three free
parameters: the limiting ([Sna]→ 0) k1p value, the Hill coefficient n and
the Sna repression threshold concentration θ. Gillespie simulations
were used to generate synthetic nascent RNA data for this model and
the three free parameters were fitted using the experimental RNA
production rate data in nc14 (Fig. 6c).

Next, we simulated the distribution of the repression onset time
within the mesodermal population utilizing the fitted parameters
(Fig. 6d). The good agreement between the predicted and experi-
mental repression onset time distributions validates the model.

The minimal stochastic model was then used to investigate the
coordination of repression within a tissue.We simulated themodel for
many values of the Hill coefficient (corresponding to a spectrum of TF
cooperativity) and Sna concentration threshold and computed the
repression onset time distributions (Fig. 6e). The width of this dis-
tribution, quantitatively defined as the interquartile range, serves as a
measure of repression coordination. In general, for a fixed con-
centration of repressor, the distribution of the repression onset time
narrows as the Hill coefficient increases (Fig. 6e). Because a larger Hill
coefficient indicates a higher degree of cooperativity, this suggests
that Sna cooperativity contributes to the coordination of repression
between nuclei.

The promoter model chosen to illustrate these phenomena is a
non-sequential one. As discussed above (see also the Supplementary
Text 1), given the separation between the two OFF states (with one

beingmuch shorter), choosing a sequential model would not alter our
conclusions.

Discussion
Understanding the mechanisms by which gene transcription is dyna-
mically attenuated within a developing tissue is a fundamental ques-
tion. Here we use live imaging and mathematical modeling to
quantitatively address this question in the context of Drosophila early
development. We focus on sna as a model gene to extract the kinetics
of promoter-switching during active repression, as well as the
dynamics of the short-range repressor protein it encodes. By mon-
itoring nascent mRNA and protein levels from endogenous loci in live
embryos, we unveil 2 main features of active repression: (1) active
repression introduces a new long OFF state to the two-state unre-
pressed dynamics; (2) repression modulates the stochastic switching
rates cooperatively. Furthermore, we predict that the inter-nuclear
coordination of repression is augmented by a high degree of repressor
cooperativity.

Transcription kinetics during active repression
The analysis of the distribution of waiting times between polymerases
during the repression phase revealed the existence of two distinctOFF
periods, one in the range of seconds and a prolonged one in the range
of minutes. The molecular nature of these rate-limiting steps can only
be an interpretation. Because of the comparison between varying
number of Sna binding sites (Fig. 5), we propose that the long OFF1-
state, apparent only in repression, corresponds to a repressor-bound
state. While the residence time of specific repressors has yet to be
detailed in vivo, it is well-demonstrated that, apart from a few
exceptions34,35, activating TFs remain bound to DNA for up to tens of
seconds36 in both Drosophila and vertebrates. How can we reconcile
typical TF residence timewith the prolongedOFF1 state resulting from
Sna binding? Given the dependency between OFF1 duration and the
number of Sna binding sites and their arrangement, we propose Sna
binds in a cooperative manner. Cooperative binding of Sna repressors
to DNA may stabilize a longer OFF1 state. A similar scenario of a pro-
longed promoter state driven by TF cooperativity has recently been
proposed in yeast37. Albeit reported for activation and not repression,
the rationale is nonetheless similar: TF exchange, possibly via coop-
erative binding, can increase the duration of a rate-limiting step during
transcription.

Our work shows that a simple two state bursting model is insuf-
ficient to accurately capture Sna repression dynamics. This contrasts
with a recent study showing that Knirps-mediated repression operates
via two states inDrosophila embryos38. However, an increasing number
of examples have revealed that three statemodels canmore accurately
capture the multiple levels of transcriptional regulation, including in
the context of the frequently observed long-lived repressionperiods in
cells39, envisaged as a ‘deepoff state’ in the case of Polycomb-mediated
silencing40.

Snail-mediated repression: a cooperative action
The cooperativity of repression manifests as a steep response of RNA
production to protein concentration. Our mathematical model sug-
gests that the high degree of cooperativity governing Sna-mediated
repression might optimize inter-nuclear coordination of repression
within a tissue.

It is well-demonstrated that TFs bind DNA cooperatively41,42.
Multiple examples point to the cooperative action of a combinatorial
set of TFs to activate or silence cis-regulatory elements, but the
underlying mechanisms remain unclear. Here, by directly measuring
the relationship between nuclear protein concentration and tran-
scriptional output in live embryos, we provide a quantitative estima-
tion of cooperativity. By examining two transcriptional targets, sna
and sog, expressed in the same tissue at a similar developmental state,

Article https://doi.org/10.1038/s41467-025-62907-3

Nature Communications |         (2025) 16:8157 9

www.nature.com/naturecommunications


we obtained an estimation of Sna-mediated cooperativity, with Hill
coefficients in the range of 6 and 7.6 for sna and sog, respectively. This
is similar to that measured for the repressor Knirps in Drosophila38.

Cooperativity can occur through protein-protein and protein-
DNA interactions, which imposes a particular arrangement of TF
binding sites, but can also be achieved with more flexible arrange-
ments such as a local change in DNA structure43 or mediated through
competition with nucleosomes44. In principle, all these modes of
cooperativity (DNA mediated, TF-TF interaction, or nucleosome-
mediated) can lead to a high Hill coefficient. Although both sna
enhancers contain Sna binding sites, they are clustered in the distal
enhancer while their arrangement is more flexible in the proximal
(Fig. 3). Interestingly, mutation analyses suggest that these so-called
‘redundant’ enhancers decode Sna repressor action very distinctly,
supporting increased cooperative action at the distal enhancer com-
pared to the proximal.

Future investigations, including promising single molecule tech-
nologies as single molecule footprinting assays45 coupled to theore-
tical models46, would be required to elucidate which TF co-occupy the
same enhancer DNAmolecule in vivo. Such TF co-occupancymapping
would begreatly enhancedby thequantificationof TFbinding kinetics.
Recent advances in single molecule imaging, including the exciting
possibility of imaging temporally-evolving repressor ‘hubs’47,48, pro-
mise encouraging future insights.

In summary, by monitoring transcription and nuclear transcrip-
tion factor levels in a developing embryo, we have uncovered kinetic
bottlenecks governing repression. Our findings support a multiscale
bursting model characterized by both short and long transcriptionally
inactive periods. In this model, the initiation of repression results in
prolonged non-productive periods governed by slow timescales.
Looking ahead, we expect that the frameworkof analysis and results of
this study will set a foundation for understanding repression dynamics
in these more complex vertebrate models of development.

Methods
Fly Husbandry
All crossesweremaintained at 25 °C. Transgenic andCRISPR lineswere
maintained as homozygous stocks unless otherwise noted (Supple-
mentary Data 2). For live imaging of single MS2 allele crosses, homo-
zygous males carrying the allele of interest were crossed with
homozygous females bearing a nos >MCP-eGFP-His2Av-mRFP trans-
gene. For live imaging of snailDistal-related transgenes, females hetero-
zygous for nos >MCP-eGFP-His2Av-mRFP were crossed to males
homozygous for the transgeneof interest. For live imaging of RNAi and
overexpression experiments, homozygousmales carryingmat-α>gal4;
nos>gal4, nos >MCP-eGFP-His2Av-mRFP were crossed with homo-
zygous females bearing the RNAi or overexpression transgene of
interest. F1 virgin females were then crossed to males bearing the
snaMS2 allele, resulting in embryos heterozygous for snaMS2. For imaging
of SnaLlama, yw; P{w[+mC] = EGFP-STOP-bcd} (hereafter named
bcd >GFP23) was crossed toHis2A-RFPt/CyO, followed by crossing of F1
virgin females to males bearing the snaLlama allele.

Generation of CRISPR knock-ins and transgenic fly lines
Guide RNA sequences were selected using the CRISPR Optimal Target
Finder site and cloned into pCFD3-dU6:3gRNA. The guide RNA
sequences are listed in Supplementary Data 3. To create the
sna24xMS2 allele, a CRISPR recombination matrix comprised of a
homology arm upstream of the 3ʹ UTR, a 24xMS2 stem loop sequence
(derived from Bertrand et al., 1998), a floxed 3xP3-dsRed selection
cassette and a downstream homology arm. The dsRed cassette was
retained in snaMS2 stocks. To create the snaLlama allele, a CRISPR
recombinationmatrix comprisedof an850bp genomic homology arm
followed by the sna coding sequence, a flexible linker and Drosophila-
optimized GFP-targeting nanobody, the genomic Drosophila 3’ UTR, a

floxed 3xP3-dsRed selection cassette, and a 900bp genomic down-
stream homology arm. All genomic DNA was amplified using Phusion
polymerase (Invitrogen), and the repair matrix was assembled in
pBluescript-II SK(+). All matrices were sequenced prior to injection.

Generation of the snaΔATG/CyO-Hb>lacZ line was accomplished
using a ssODN co-CRISPR approach detailed in Levi et al.49 Briefly,
gRNAs (SupplementaryData 3) were constructed targeting the sna and
w coding sequences via PCRwith Phusionpolymerase (Invitrogen) and
assembled into pCFD4 snaΔATG_wcoffee using NEBuilderHiFi DNA Assem-
bly Kit (New England Biolabs). A ssODN repair matrix targeting the sna
N-terminal coding sequence was designed to add an EcoRI site in
parallel for the screening. It was co-injected into y1,M {vas-Cas9} ZH-2A
embryos along with a CRISPR repair matrix (pUC57-white [coffee]
Addgene #84006) facilitating a conversion of the w+ allele into wcoffee

and pCFD4 snaΔATG_wcoffee. F0 flies were single-crossed to females
bearing sp/CyO-Hb>lacZ and resulting F1 screened for the wcoffee phe-
notype. F1 males were backcrossed to sp/CyO-Hb>lacZ balancer
females and checked by genomic PCR and digestion (EcoRI) after
several days to confirm themutation. ssODNs were obtained from IDT
Technologies.

The snaDistal−24xMS2-y and snaDistalCore−24xMS2-y minigenes have
been previously described50,51. The snaDistalMut and snaDistalAlt enhancers
were synthesized by Twist Biologicals. The snaDistalCore sequence was
removed from pBPhi snaShadowCore > snaPr > 24xMS2-y using
restriction enzyme-mediated excision and the snaDistalMut or snaDistalMut

enhancer was inserted using NEBuilder HiFi DNA Assembly Kit (New
England Biolabs) upstream of the sna promoter sequence. Enhancer
sequences are listed in Supplementary Data 4. Transgenic flies were
generated by PhiC31-mediated recombination into the VK33 locus
(BL 9750).

Injectionswere performedby theDrosophilaTransgenesis Facility
(Centro de Biología Molecular Severo Ochoa, Madrid) and FlyORF
(Zurich). All stocks are homozygous with no observable viability
defects, except for snaΔATG/CyO-Hb>lacZ which is heterozygous. All
lines are listed in Supplementary Data 2.

Live imaging
Embryos were permitted to lay for 2 h prior to mounting for live
imaging. Embryos were hand-dechorionated using tape and mounted
on a hydrophobic membrane prior to oil immersion to prevent
desiccation, followed by the addition of a coverslip. Live imaging of
MS2 embryos was performed with an LSM 880 with an Airyscan
module (Zeiss). Z-stacks comprised of 30 planes with a spacing of
0.5μmwere acquired at a time resolution of 4.64 s (snaMS2 and snaBAC
reporters), 6.35 s (sogMS2 and derivatives), or 3.86 s (transgenic repor-
ters) in fast Airyscanmode with laser powermeasured andmaintained
across embryos using a ThorLabs PM100 optical power meter (Thor-
Labs Inc.). All wild type background snaMS2 movies and sna BAC
reporter movies were performed with the following settings: GFP
excitation by a 488-nm laser (8uW with 10x objective) and RFP exci-
tation by a 561 nm were captured on a GaAsP-PMT array with an Air-
yscan detector using a 40x Plan Apo oil lens (NA = 1.3) and a 2.5x zoom
on the ventral region of the embryo centered (± 25 μm) on the pre-
sumptive ventral midline. Resolution was 640 × 640 pixels with bidir-
ectional scanning. All sogMS2 (and derivative genotypes) movies were
performed with the following settings: GFP excitation by a 488-nm
(4.9uW with 10x objective) laser and RFP excitation by a 561 nm were
captured on a GaAsP-PMT array with an Airyscan detector using a 40x
Plan Apo oil lens (NA = 1.3) and a 2x zoom on the ventral/lateral region
of the embryo including the ventral furrow. Time resolution was 6.35 s
and resolution was 800×800 pixels with bidirectional scanning. All
RNAi- and overexpression-related snaMS2 movies were performed with
the following settings: GFP excitation by a 488-nm laser (7.7uW with
10x objective) and RFP excitation by a 561 nm were captured on a
GaAsP-PMT array with an Airyscan detector using a 40x Plan Apo oil
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lens (NA = 1.3) and a 2.5x zoom on the ventral region of the embryo
centered (±25μm) on the presumptive ventralmidline. Resolution was
640 × 640 pixels with bidirectional scanning. All snailDistal transgene
(and derivative genotypes) movies were performed with the following
settings: GFP excitation by a 488-nm laser (10.5uW with 10x objective)
and RFP excitation by a 561 nm were captured on a GaAsP-PMT array
with an Airyscan detector using a 40x Plan Apo oil lens (NA = 1.3) and a
3x zoomon the ventral region of the embryo centered (±25μm)on the
presumptive ventral midline. For all imaging conditions, Airyscan
processing was performed using 3D Zen Black v3.2 (Zeiss).

Imaging of SnaLlama;His2A-RFP was performed with an LSM880
(Zeiss). 18 Z-planes with a spacing of 1 μm were acquired with a time
resolution of 42 s/z stack. Movies were performed with the following
settings: GFP excitation by a 488 nm laser and RFP excitation by a
561 nm laser captured on a GaAsP-PMT array using a 40x Plan Apo oil
lens (NA = 1.3) at 1x zoom with resolution of 512 × 512 pixels. Laser
powerwasmeasured andmaintained across embryos using aThorLabs
PM100 optical power meter (ThorLabs Inc.).

Image analysis for MS2-MCP movies
The region of analysis was maintained at 25μm on either side of the
presumptive ventral furrow. The intensity profile of the transcriptional
sites imaged were extracted with a custom software developed in
PythonTM52–54 that has been previously published16 (SegmentTrackv4.0,
https://github.com/ant-trullo/SegmentTrack_v4.0). However, for this
study apost-processing toolwas added (https://github.com/ant-trullo/
SpotsFiltersTool). Transcription sites were infrequently resolved as
two sister chromatids by the detection algorithm, potentially con-
founding distinguishing between sister chromatids and false detection
events. A parameter was defined as the ratio between the convex hull
surface determined by the two spots and their actual size. For sister
chromatids this ratio is small (<4) since the two spots are close, while a
false detection event will generally be far from the real spot and with a
small volume, so the ratio will be large (>4). Some blinking activation
could potentially be falsely discarded with an overly stringent criteria
for sequential frames showing activity, so a user-defined thresholdwas
established for determining the number of sequential inactive time
points required for detection to be considered false.

For analysis of homozygous snaMS2/MS2 movies, a further post-
processing tool was developed (https://github.com/ant-trullo/
SistersSplitTool). To differentiate the alleles within the ‘spot’ signal,
the position of each putative spot was identified relative to the center
of mass of the nucleus across time. These values were organized into
two clusters using the Gaussian mixture algorithm from which the
tracking in 3D was reconstructed. False detection events generally
appeared far from the spot positions and as such could be removed as
outliers based on their spatial position. Finally, a manual inspection
and correction tool was implemented via a graphical user interface to
perform detailed corrections.

Single molecule FISH and smFISH-immunofluorescence
Embryos heterozygous for the allele of interest were fixed in 10% for-
maldehyde/heptane for 25min with shaking followed by storage in
methanol at −20 °C as previously described16. smFISH probes were
designed and produced with primary labeling using Quasar 670 by
LGC Biosearch Technologies Inc. Probe sequences are listed in Sup-
plementary Data 5. smiFISH probes were designed following a mod-
ification of a previous methodology55 and produced by IDT.

Embryos were dehydrated with 2 × 5min washes in 100% ethanol,
followed by rehydration in PBT for 4 × 15min and equilibration in 15%
formamide/1 × SSC for 15min. During equilibration, the probemixture
waspreparedwith afinal concentration of 1 × SSC, 0.34μgμL − 1 E. coli
tRNA (New England Biolabs), 15% formamide (Sigma), 5-μL probe,
0.2μgμL − 1 RNAse-free BSA, 2mM vanadyl-ribonucleoside complex
(New England Biolabs), and 10.6% dextran sulfate (Sigma) in RNAse-

free water. The equilibration mixture was removed and replaced with
probe mixture, and embryos were incubated overnight in the dark at
37 °C with shaking. The following day, embryos were rinsed twice in
equilibrationmix and twice in PBT, followedbyDAPI staining and three
PBT washes before mounting in ProLong Gold mounting media (Life
Technologies). For smFISH-IF, the same protocol was performed with
additionof the primary antibody (rabbit anti-snail 1:500)56 in the probe
mixture followed by secondary antibody (donkey anti-rabbit Alexa
Fluor 488 1:500, Life Technologies) during PBT washes on the
second day.

Fixed imaging
Fixed sample imaging was performed on an LSM 880 with an Airyscan
module (Zeiss). Z-planes were acquired with 0.33μm spacing to a
typical depth of 25–30μm from the apical surface of the embryo using
laser scanning confocal in Airyscan super-resolution mode with a
zoom of 3.0. DAPI excitation was performed with a 405 nm laser,
secondary Alexa Fluor 488 excitation with a 488 nm laser (8μW), and
Q670 with a 633 nm laser (11.5μW), with detection on a GaAsP-PMT
array coupled to an Airyscan detector. Airyscan processing was per-
formed using 3D Zen Black v3.2 (Zeiss) prior to analysis. Embryos were
staged based on membrane invagination.

Single molecule FISH analysis
To analyse smFiSH data we used a custom software developed in
PythonTM52–54 that has been previously published57. Data was acquired
in two channels, one for nuclei and the other for transcription, both in
3D (ZXY). Transcription channel was treated with a difference of
Gaussian filter and the resulting image was thresholded. To find the
optimal threshold value, the algorithm performed a systematic study
over a range of different threshold values, followed by manual
inspection and selection. The detected spots were composed of both
transcriptional sites and single molecules that were further isolated
into individual populations using a classifier and a visual tool for
manual corrections when appropriate. The nuclei channel was pre-
smoothed with a Gaussian filter and user-defined threshold individu-
ally for each z-slice to detect nuclei in 2D in each frame. TheseZ-frames
were then combined in 3D to have a preliminary structure for nuclei.
The following stepwas to find the smallest ellipsoid able to contain the
detected 3D nucleus, which was then defined as the final nuclear
volume. Finally, the intersection between the major axes of the ellip-
soids was identified for each plane and used these points to simulate
pseudo-cells with the Voronoi algorithm. Once the pseudo-cells were
defined, the spatial position of transcription sites and singlemolecules
was used to assign them to the appropriate ‘cell’. As each transcription
site and single molecule has an associated intensity, the equivalent
number of mRNA molecules was then calculated for each
transcription site.

Data analysis of Snail Llama

Visualization and analysis of the time series data was performed
using custom software developed in Python™52–54 enabled by a gra-
phical user interface (NucleiTracker3D, https://github.com/ant-
trullo/NucleiTracker3D). Raw data consisting of a two channel
TZXY series with SnaLlama-GFP intensity and His2A-mRFP as a refer-
ence nuclear marker. The reference nuclear channel was pre-
smoothed using a Gaussian filter, and then thresholded with an
Otsu algorithm. The resulting connected components were labeled
in 3D treated with a 3D watershed algorithm to separate touching
nuclei. Hyper-segmented nuclei were recognized using a classifier
algorithm previously trained to identify ‘sub-nuclear’ fragments and
combine them with neighboring nuclei, privileging combinations
with the fewest sub-components. Segmented nuclei were tracked by
sequentially projecting the t-1 time point nuclear mask onto the
frame of time point t and tagging each nuclei n with the most
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coincident nuclear tag of the projected mask using a median filter, as
nuclear motion between timepoints t-1 and t was less than the
nuclear radius in XYZ. This 3D-tracked nuclear mask was then pro-
jected on the SnaLlama-GFP channel to retrieve the nuclear GFP fluor-
escence. For each time point the average nuclear out-of-pattern and
in-pattern GFP signal intensity was retrieved. An enrichment ratio
was then calculated by dividing the in-pattern by the out-of-pattern
GFP signal intensity in a time-dependent manner58.

Deconvolution analysis of the data using BurstDeconv
We use BurstDeconv14 to obtain, for each transcription site, the
sequence of processive transcription initiation events. The method
considers that the single site MS2 signal is a sum of identical single
polymerase contributions translated in different positions corre-
sponding to the initiation events. The signal is calibrated in terms of
numbers of polymerases using smFISH16, hence the amplitude of the
signal polymerase contribution is equal to one. The dwell time, defined
as the duration of the single polymerase contribution signal, is
obtained using the autocorrelation function of the stationary single
site MS2 signal in nc1314,17. The predicted mean RNA Pol II elongation
rates are 35 bp/s in nc13 and 25 bp/s in nc14, and thus deconvolution
was performed using a polymerase speed of 25 bp/s. Finally, the pro-
cessive transcription initiation events positions are obtained by com-
bining a genetic algorithm with a local optimisation procedure to
minimise the least squares distance between the predicted and
observed signal. One should note that this procedure, initially applied
to stationary signals14–16, can also be applied without modification to
non-stationary signals.

Multi-exponential regression and multiple state transcription
model reverse engineering using the survival function on sta-
tionary segments of the signal
The single-site MS2 signal can be approximated as stationary within
segments corresponding to two regimes: the fully unrepressed regime
during nuclear cycle 13 and the fully repressed regime during the
terminal segment of the nuclear cycle 14 signal. On such segments we
use the Kaplan-Meyer method to compute a survival function, repre-
senting the nonparametric cumulative distribution function of the
waiting times separating successive transcription events. A multi-
exponential fitting of the survival function using N exponentials
(N = 2,3 for two and three states models, respectively) is followed by
the reverse engineering of the transcription model using a symbolic
method described previously14,19. The multi-exponential regression
determines the number of states based on parsimony. We select the
simplest model that provides a good fit to the survival function, as
judged by three criteria: the least-squares objective function, the
confidence interval of the Kaplan-Meier estimate, and the
Kolmogorov-Smirnov test. The justification of three-state model
topology is expanded upon in the Supplementary Text 1.

Determining the dwell time from autocorrelation
The signal autocorrelation function is defined as
R t, t0ð Þ=Cov x tð Þ, x t0ð Þð Þ, where x tð Þ is the single site MS2 signal. For a
stationary MS2 signal, this function depends only on Δt = t � t0

according to the relation:

R � G Δt +dð Þ � 2G Δtð Þ+G Δt � dð Þ ð1Þ

where d is the dwell time, G xð Þ= � xH �xð Þ and

HðxÞ= 1 if x ≥0

0 if x <0

�
ð2Þ

is the Heaviside function. A derivation of (1) has been previously
published17.

For the purposes of this research, the stationary signal from
nuclear cycle 13 was used to fit the dwell time (Supplementary Fig. 8).

Estimating the time-dependent repression
TheMS2 signal is non-stationary during the nuclear cycle 14. Typically,
we notice a decrease of the signal amplitude, suggesting increasing
repression. To characterize the time dependence of the repression, we
use a moving windowmethod to estimate the time dependence of the
mean waiting time <τ> between successive processive transcription
initiation events. As shown elsewhere19, there is a general formula
relating the mean <τ> and pON · kini, where pON is the probability of the
transcribing (ON) state and kini is the transcription initiation rate in this
state. This formula is valid for all finite state Markov models, irre-
spective of their number of states. We reproduce here the reasoning
leading to this formula. The mean number of transcription events on
an interval [0,T] is T/<τ > . The same number is equal to T·pON·kini,
because in the state ON, the promoter initiates with intensity kini and
the total time spent in the ON state is T· pON.

It follows that:

< τ > =
1

pON � kini
ð3Þ

For a stationary signal pON · kini and thus <τ> are functions of time.
For increasing repression, <τ> is increasing (the initiation events are
rarer). Therefore, the estimate of <τ> and implicitly that of pON · kini is a
method to gauge repression. To estimate <τ > , we define a narrow
moving window centered on successive time frames and consider all
the waiting times from all transcription sites contributing to signal
observed in the moving window, gathering sites observed in several
movies for enriched statistics. The width of the windows is 5-8 frames,
i.e. 22.7-36.3 seconds for sna. This width is enough for including a
sufficiently large number of waiting times for an accurate estimate of
the mean <τ > . We compute the uncertainty bounds of the mean for
each movie independently using the central limit theorem with a 95%
confidence interval, and then plot the minimum lower bound and the
maximum upper bound over all the movies.

Bayesian change point detection for determining the onset of
repression
The BCPD method22 is used to determine the onset of repression by
determining the probability of having a change point denoting a
sudden change in the parameters that generate the data. The dis-
tribution of the run length rðtÞ, defined as the time since the most
recent change point, is learned from the data using this method. At
each time step, rðtÞ increases by 1 if there is no change in the dis-
tribution, or it returns to zero when there is a change with a certain
probability. It is based on a recursive message-passing algorithm for
the joint distribution of observations and run lengths. The algorithm
assumes that: (i) the single nucleus MS2 signal follows a normal dis-
tribution with unknown mean and variance, and (ii) the run length
advances without memory, according to a geometric distribution.

An illustration of the BCPD method is given in Supplementary
Fig. 4. For discretized times t = 1, 2, . . . the run length rðtÞ is defined by
the following relation:

r t + 1ð Þ= r tð Þ+ 1 if no change of parameters

0 if there is a change

�
ð4Þ

The BCPD method computes the conditional probability of the
run length, given the observed values of the signal. The prior of this
distribution is learned from the data.We have tested themethodusing
synthetic data generated using the Gillespie algorithm and a two-state
telegraph model. The model includes an RNA and a protein pool and
considers autorepression by considering that the kinetic parameters
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depend on the protein level according to decreasing and increasing
Hill functions, respectively (Supplementary Fig. 4A). We have used the
promoter transcription initiation events to compute a synthetic
MS2 signal for each site. The traces generated by this model show
change points corresponding to onset of the repression. These change
points are correctly detected by the method as shown visually in
Supplementary Fig. 4A where we confirm that the switching para-
meters are stable after the change point is found. Since this is a
Bayesian approach, the change point is identified with a probability. A
thresholdwas imposed such that the probability pmustbe >0.8 for the
change to be retained (Supplementary Fig. 4B middle vs bottom
panel). Three further criteria for detecting the change point were
applied to change point detection on experimental data. First, due to
the noisy nature of the data, a smoothing criterion was applied. The
smoothing process involves convoluting the data with a box filter
kernel of size 2 so that the rapid fluctuations in the experimental data
are attenuated in the smoothed data. Second, a changepoint detection
window was imposed such that the selected changepoint was the first
change point to occur after 60% of the maximum to eliminate chan-
gepoints during the post-mitotic activation period. Third, a minimal
filtering criterionwas applied to individual traces. The filtering process
includes the elimination of signals in the attenuatedpart that are either
0 everywhere or have less than 5% of the mean number of initiation
events before the identified changepoint.

The part of theMS2 signal after the repressor onset checkpoint in
nc14 and the full MS2 signal in nc13 were then used for inferring pro-
moter models for the repressed and active phases, respectively, using
BurstDeconv14. Model selection was performed using three fitting
scores: the objective function, the confidence interval of the empirical
survival function and the Kolmogorov-Smirnov test comparing the
empirical and predicted distribution of waiting time between succes-
sive transcription events14.

Homozygous snaMS2/MS2 data analysis
For snaMS2/MS2 movies, deconvolution of the data was processed in two
separate approaches: (1) the alleles were segregated based on the first
(1st allele—paired) and second (2nd allele—paired) activated allele in a
single nucleus, or (2) all alleleswerepooled regardless of their ‘mother’
nucleus or activationorder and randomlyallocated tooneof twopools
(“1st allele—random” or “2nd allele—random”). For the paired allele
pools, alleles were retained only if both alleles in a nucleus entered
stable repression to avoid bias, whichwas >95%of nuclei analyzed. For
the randomly assigned pools, all alleles that entered stable repression
were retained.

The Hill equation model for the mean mRNA production rate
The key to this model is the nonlinear relation between the repressor
protein concentration and the mRNA production rate:

ðpON � kiniÞð½P�Þ=Vmin + Vmax � Vmin

� � θn

θn + ½P�n ð5Þ

where [P] is the repressor protein concentration, Vmax and Vmin are the
maximal and minimal mRNA production rates, θ is the threshold
repressor protein concentration at half-maximal repression, and n is
the Hill coefficient. As suggested in its first utilisation by Hill25, n does
not necessarily take integer values. Values n > 1 indicate positive
cooperativity, meaning that binding of one molecule of repressor to
DNA facilitates the binding of additional molecules and/or enhances
their repressive effect.

If the protein level and the product pON � kini (also described in
text as the inverse of <τ > , see Eq. (3)) are both known, Eq. (5) can be
used to estimate the parametersV, θ, and n, with no assumption of the
identity of the repressor or mechanism of repression.

Stochastic model of transcriptional repression
The Hill equationmodel for themeanmRNA production is useful for a
first analysis of the data. It has the advantage of estimating a Hill
coefficient which is a measure of cooperativity. This model does not
propose mechanisms or dynamics for transcriptional repression.
Therefore, we need a dynamical model of the transcriptional process
under repression. Furthermore, the Hill equation cannot explain the
stochastic fluctuations in mRNA production. Using the BCPD method,
we extracted repression onset times from experimental data and
observed that these times vary across different nuclei. A stochastic
model is therefore needed to gainmore insight into the distribution of
these times.

We therefore propose a discrete state transcription model for
the endogenous promoter, in which the transcription dynamics is
described by the stochastic transition between states. To account
for the effect of the repressor on transcription in the simplest
way, we consider that the transition rates between discrete pro-
moter states are modulated by the repressor in a Hill-dependent
manner.

The objectives of this mathematical model are to (1) check
whether our model can reproduce the distribution of repression
onset times extracted using BCPD from the experimental data in
nc14 and (2) predict the effect of cooperativity on coordinated
repression (by scanning over different ranges of Hill coefficient and
threshold values).

To build this model, we consider the following experimental
observations:
1. The BurstDeconv analysis of stationary segments of the single

nucleus MS2 signal indicates a two-state model for nc13 and a
three-state model for the last segment of nc14 during repression.
The three-state model includes two OFF states: a long one,
denoted OFF1, and a short one, denoted OFF2. This suggests a
transition from a two-state system to a three-state system during
nc14.Wedonot knowapriori whichof the states (OFF1 orOFF2) is
newly introduced and which is a continuation of the OFF state
from nc13/early nc14.

2. The transgene experiments show that when the number of Sna
binding sites and therefore the repression is weakened, there is a
transition from a three state model to a two state model. This is
consistent with observation 1.

3. TheBurstDeconv analysis of different genotypes suggests that the
switching rate constants between discrete states in the three state
model depend on repression as follows (see Supplementary
Fig. 10A–G):
a. k1

p = 1/TOFF1 decreases strongly with repression,
b. k1

m increases strongly with repression, with k1
m being very

small (its inverse corresponding to hours) when repression is
very weak,

c. k2
m increases strongly with repression,

d. k2
p = 1/TOFF2 has a mild increase with repression,

4. kini is very similar for nc13 and the last segment of nc14.

According to 3b, the long state OFF1 is very rare (practically not
accessible) at weak repression, and therefore the long OFF1 likely
corresponds to the new state induced by repression.

Here we hypothesized that weakening the repression by
eliminating Sna binding sites in transgenes is equivalent to
decreasing the concentration of Sna for endogenous promoters.
We do not exclude the possibility that other TFs (activators or
repressors) may also modulate the expression from the endo-
genous locus, but we consider that the main contribution to the
observed variation of parameters is due to changes in the Sna
concentrations.

Thus, the transcriptional process is described as a three state
Markovian model and governed by the following set of chemical
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reactions:

OFF1 !
kp
1 Snail½ �ð Þ

ON ð6Þ

ON !
km
1 ½Snail�ð �

OFF1
ð7Þ

OFF2 !
km
2 Snail½ �ð Þ

ON ð8Þ

ON !
kp
2 Snail½ �ð Þ

OFF2
ð9Þ

ON!kini ON +mRNA ð10Þ

The Hill-like dependence of parameters kp
1 Snail
� �� �

, kp
2 Snail
� �� �

,
km
1 Snail

� �� �
and km

2 Snail
� �� �

is given by the equations (we use
increasing and decreasing Hill functions for the ON- >OFF, and OFF-
>ON transitions, respectively):

kp
1 Snail
� �� �

= kp
1

� �
rep + kp

1

� �
act � kp

1

� �
rep

� � θn

θn + Snail
� �n ð11Þ

kp
2 Snail
� �� �

= kp
2

� �
act + kp

2

� �
rep � kp

2

� �
act

� � ½Snail�n
θn + Snail

� �n ð12Þ

km
2 Snail

� �� �
= km

2

� �
act + km

2

� �
rep � km

2

� �
act

� � Snail
� �n

θn + Snail
� �n ð13Þ

km
1 Snail

� �� �
= km

1

� �
rep

Snail
� �n

θn + Snail
� �n ð14Þ

where kp
1

� �
act > kp

1

� �
rep, kp

2

� �
act < kp

2

� �
rep are OFF- >ON rates,

km
2

� �
act < km

2

� �
rep are ON- >OFF rates in active and repressed phases,

respectively.
The rate parameters kini,ðk2

pÞact ,ðk2
mÞact ,ðk2

mÞrep,ðk2
pÞrep,ðk1

mÞrep,
ðk1

pÞrep were chosen equal to the already estimated values, in the active
nc13 and repressed nc14 regimes (Supplementary Data 1, 2 state and
3 state non-sequential model). All parameters except kini depend
on Sna½ �:

The model remains with three free parameters n, θ,ðk1
pÞact that

were fitted to the pON.kini vs [Sna] curves and to the distribution of
repression onset times data. The result of the fit is given in Supple-
mentary Data 7.

The Gillespie algorithm was used to numerically simulate the
model. To account for post-mitotic lag in transcriptional reactivation,
we assumed that transcription began after a lag time in nc14, which
varied for each nucleus. The simulatedmodel distribution of lag times
was sampled from the experimental post-mitotic lag duration of the
sna gene, which was obtained using the BurstDeconv deconvolution
output. In these simulations, the protein signal was considered
deterministic; in other words, different nuclei receive regulatory cues
that depend on the time point only.

A synthetic MS2 signal was computed for each simulation using
the dwell time parameter of the snaMS2 gene such that the simulated
data can be compared with the experimental results in nc14.

In order to test the dependence of the repression onset time
on the Hill function parameters, 154 value pairs of {(k1p)act, n, θ}
were benchmarked with each simulation run for 484 sample traces
and a duration of 30.93min to match the time window studied for
the expression of the experimental snaMS2 gene. Each simulation

was then run for each set of {(k1p)act, n, θ} through the BCPD
algorithm to obtain the repression onset time. No smoothing was
applied to the signal used in the stochastic model since no noise
was added. Figure 6c shows the results of the best fit simulations.
We then chose the best values of {(k1p)act, n, θ} that fit the data
according to the sum of squared error between pON.kini of the data
and the simulations. Figure 6d shows the distribution of the
repression onset time computed for these parameters. The good
agreement between predicted and experimental distributions
validates the stochastic model.

qPCR analysis
To test changes in expression of pause-related genes, 0–2 h embryos
were homogenized in Trizol (Invitrogen), and RNA was extracted as
directed by the manufacturer. Reverse transcription was performed
using Superscript IV (Invitrogen) with random hexamers. Measure-
ments were performed in biological and technical triplicate.
qPCR analysis was performed using LightCycler 480 SYBR Green I
Master Mix (Roche) using primers listed in Supplementary Data 6.
Analysis was performed using Microsoft Excel and Prism (Graph-
pad 9.1.1).

Snail binding site identification
Sna ChIP data was obtained from previously published data
(GSE68983)24. To identify potential transcription factor binding sites,
we employed the FIMO (Find IndividualMotif Occurrences) tool59 with
Sna motifs obtained from the JASPAR database60. The significance
threshold for motif matches was set at p < 1e–3. Sna binding sites were
queried in the local neighborhood of the highest (>500) ChIP signal
for Sna.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available from the
corresponding authors upon request.

Code availability
BurstDECONV source code is available through GitHub at https://
github.com/oradules/BurstDECONV, and also on Zenodo at https://
zenodo.org/record/7443044. SegmentTrack is available via GitHub at
https://github.com/ant-trullo/SegmentTrack_v4.0 and the post-
processing tool developed for this study at https://github.com/ant-
trullo/SpotsFiltersTool. NucleiTracker3D is available via GitHub at
https://github.com/ant-trullo/NucleiTracker3D. The BCPD algorithm is
available via GitHub at https://github.com/mariadouaihy/BCPD_
inhomogeneous_transcriptional_signal. Raw imaging data is available
upon request.
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