The HBZ factor of human T-cell leukemia virus type I dimerizes with transcription factors JunB and c-Jun and modulates their transcriptional activity

Basbous, J.; Arpin, C.; Gaudray, G.; Piechaczyk, M.; Devaux, C.; Mesnard, J. M.

Journal of Biological Chemistry

2003-10-31 / vol 278 / pages 43620-43627


The human T-cell leukemia virus type I (HTLV-I)-encoded Tax protein activates transcription from the viral promoter via association with the cellular basic leucine zipper factor cAMP-response element-binding protein-2. Tax is also able to induce cellular transformation of T lymphocytes probably by modulating transcriptional activity of cellular factors, including nuclear factor-kappaB, E2F, activator protein-1 (AP-1), and p53. Recently, we characterized in HTLV-I-infected cells the presence of a novel viral protein, HBZ, encoded by the complementary strand of the HTLV-I RNA genome (Gaudray, G., Gachon, F., Basbous, J., Biard-Piechaczyk, M., Devaux, C., and Mesnard, J.-M. (2002) J. Virol. 76, 12813-12822). HBZ is a nuclear basic leucine zipper protein that downregulates Tax-dependent viral transcription by inhibiting the binding of cAMP-response element-binding protein-2 to the HTLV-I promoter. In searching for other cellular targets of HBZ, we identified two members of the Jun family, JunB and c-Jun. Co-immunoprecipitation and cellular colocalization confirmed that HBZ interacts in vivo with JunB and c-Jun. When transiently introduced into CEM cells with a reporter gene containing the AP-1 site from the collagenase promoter, HBZ suppressed transactivation by c-Jun. On the other hand, the combination of HBZ with Jun-B had higher transcriptional activity than JunB alone. Consistent with the structure of its basic domain, we demonstrate that HBZ decreases the DNA-binding activity of c-Jun and JunB. Last, we show that c-Jun is no longer capable of activating the basal expression of the HTLV-I promoter in the presence of HBZ in vivo. Our results support the hypothesis that HBZ could be a negative modulator of the Tax effect by controlling Tax expression at the transcriptional level and by attenuating activation of AP-1 by Tax.



DNA-binding; activates transcription; basic region; constitutive expression; creb-2 atf-4; domain-containing protein; fos-jun; k-bzip; leucine zipper; tax protein

Toutes les publications