We show that a splice variant-derived cyclin B is produced in sea urchin oocytes and embryos. This splice variant protein lacks highly conserved sequences in the COOH terminus of the protein. It is found strikingly abundant in growing oocytes and cells committed to differentiation during embryogenesis, Cyclin B splice variant (CBsv) protein associates weakly in the cell with Xenopus cdc2 and with budding yeast CDC28p, In contrast to classical cyclin B, CBsv very poorly complements a triple CLN deletion in budding yeast, and its microinjection prevents an initial step in MPF activation, leading to an important delay in oocyte meiosis reinitiation, CBsv microinjection in fertilized eggs induces cell cycle delay and abnormal development. We assume that CBsv is produced in growing oocytes to keep them in prophase, and during embryogenesis to slow down cell cycle in cells that will be committed to differentiation.
A presumptive developmental role for a sea urchin cyclin B splice variant
Lozano, J. C.; Schatt, P.; Marques, F.; Peaucellier, G.; Fort, P.; Feral, J. P.; Geneviere, A. M.; Picard, A.
1998
Journal of Cell Biology
1998-01-26 / vol 140 / pages 283-293
Abstract
0021-9525
Tags
activation; protein-kinase; cell-cycle; tyrosine phosphorylation; catalytic subunit; gene family; meiotic maturation; p34(cdc2); starfish; xenopus