Genome Organization and Epigenetic Control

Thierry Forne

Research projects

Our research focuses on understanding how higher-order 3D chromatin organization is involved in the control of gene expression in mammals in both physiological and pathological contexts.

Through the development of original experimental techniques and modeling tools, our team is unravelling properties of chromatin organization at two important levels: Topologically-Associating Domains (TADs) and nuclear compartments.



Coordination of mammalian gene expression within TADs

Our group contributed to the development of the Chromosome Conformation Capture (3C) technologies by improving the sensitivity of the 3C assay (3C-qPCR method) (Hagège et al., Nature Protocols 2, 1722, 2007; Rebouissou et al., Meth. Mol. Biol. 2532, 187-197, 2022). Using this method, we showed that gene-rich loci display modulated contact frequencies (Court et al., Genome Biol. 12, R42, 2011). After initiating an interdisciplinary project in association with Annick Lesne, physicist, we showed that this modulation can be described by polymer models as if the mammalian chromatin was folded statistically into a helix shape (statistical helix model, see figure) (Ea et al., Genes 6, 734-750, 2015). We then showed that, due to their different size, distinct principles of polymer physics govern chromatin dynamics in mouse and Drosophila topological domains (Ea et al., BMC Genomics 16, 607, 2015; collab. with G. Cavalli, Montpellier).

More recently, we showed that some endogenous retroviral (ERV) sequences act in the mouse genome as putative enhancers controlling endogenous gene expression through long-range chromatin interactions controlled by HP1 (Heterochromatin Protein 1) (Calvet et al., Cells 11, 2392, 2022; collab. with F. Cammas, IRCM, Montpellier).

Finally, in an in-silico study, using genome-wide association studies (GWAS), we showed that, for a fraction of human diseases, diseases-associated non-coding Single Nucleotide Polymorphisms (daSNPs) are preferentially located in TAD borders (Jablonski et al., Human Genomics, 16, 2, 2022; collab. with M.T. Hütt, Bremen, Germany). Remarkably, cancers are relatively more frequent among these diseases and we are now characterizing the higher-order 3D chromatin organization of one such paradigmatic locus associated with lung cancer risk.

Principle of the HRS-seq method (Baudement et al., Genome Res., 28, 1733-1746, 2018).


Nuclear bodies and higher-order chromatin organization in mammals

Nuclear bodies are membrane-less sub-nuclear organelles that behave as liquid-like droplets. Many of them assemble in vivo through phase separation processes and play an essential role in coordinating efficient expression of some genes by confining together specific chromatin regions dispersed throughout the genome (Lesne et al., Genes 10, 1049, 2019). We developed a novel experimental approach (HRS-seq method) for genome-wide analyses of sequences associated with large ribonucleoproteic (RNP) complexes, including nuclear bodies. Using mouse Embryonic Stem (ES) cells, we showed that the active chromosomal compartment is associated with such large RNP complexes (Baudement et al., Genome Res. 28, 1733-1746, 2018; collab. with L. Journot, IGF, Montpellier and J. Mozziconacci, MNHN, Paris).

Assembly of transcriptional condensates by phase-separation (Lesne et al., Genes. 10, 1049, 2019)

We are now exploring the role that these nuclear bodies play in higher-order chromatin organization and in the control of gene expression, during cell differentiation or in some pathological situations. In order to more accurately identify genes associated with a specific class of nuclear bodies, we try to adapt the HRS-seq method by acting on the physical parameters of phase separation (ARGECOR 80Prime project, supported by the interdisciplinary mission of the CNRS - MITI).


Team leader

Thierry FORNE

Chercheur DR2

(+33) 04 34 35 96 82




+33 (0)4 34 35 96 76


Audrey FRAT


+33 (0)4 34 35 96 82


Annick LESNE

Chercheur DR1

(+33) 04 34 35 96 31


Chercheur CRCN

(+33) 04 34 35 96 84




+33 (0)4 34 35 96 84


Stephan MORA


(+33) 04 34 35 96 31




(+33) 04 34 35 96 84


Previous lab members

Guy CATHALA, DR2 CNRS (2004-2016),

Jacques PIETTE, DR2 CNRS (2007-2009),

Michael WEBER, CR2 INSERM (2008-2011),

Marie-Noëlle LE LAY-TAHA, senior lecturer (2010-2014),

Johann SORET, DR2 CNRS (2021-2022),

Florence RAGE, CRHC CNRS (2021-2022),


Caroline BRAEM, post-doctoral fellow (2005-2007),

Sylvain GUIBERT, post-doctoral fellow (2008-2011),

Soizik BERLIVET, post-doctoral fellow (2014-2015),


Hélène HAGEGE, PhD student (2001-2005),

Franck COURT, PhD student (2006-2010),

Julie BORGEL, PhD student (2007-2011),

Van Giang TRAN, PhD student (2010-2014),

Vuthy EA, PhD student (2011-2014),

Marie-Odile BAUDEMENT PhD student (2011- 2015),

Pauline DUC, PhD student (2021- 2022),


Julie MIRO, research assistant (2008),

François GATCHITCH, research assistant (2009),

Marie SEVENO, research assistant (2010),

Françoise CARBONELL, Montpellier University technician (2010-2012),

Audrey MOISAN, research assistant (2021-2022).

Selected Publications

More information




Fondation ARC


Institut National du Cancer

Ligue contre le cancer


- Cammas F. (IRCM, Montpellier, France). Chromatin dynamics in HP1 TKO mouse models.

- Cavalli G. (IGH, Montpellier, France). Chromatin dynamics in the fly Drosophila.

- Fan Y. (Georgia Tech Institute, Atlanta, USA). Chromatin dynamics in histone H1 TKO ES cells.

- Journot L. (IGF, Montpellier, France). Development of the HRS-seq method.

- Hütt M.T. (Jacobs University, Bremen, Germany). Biological network analysis.

- Mozziconacci J. (MNHN, Paris France). Genome 3D reconstruction and genomic data analyses.

- Naimark O. (Institute of Continuous Media Mechanics, Perm, Russia). Physics of cancer.

- Turecki G. (McGill, Montréal, Canada). 3D chromatin organization at the IRX2 locus.

- Victor J.-M. (LPTMC, UMR7600, Paris, France). Polymer modelling of chromatin dynamics.

Useful Links

We are looking for PhD students and post-doctoral researchers. Candidates should send a CV and recommendation letters to

View all research teams

Team Overview
Model organism studied
Mouse / Human cells
Biological process
Genome organization and epigenetic control of gene expression.
Biological techniques
Molecular biology, Chromosome Conformation Capture, physical modeling, bioinformatics, cell cultures.